Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 25;65(Pt 5):o1131. doi: 10.1107/S1600536809014846

5,7-Dichloro­quinolin-8-ol

Seik Weng Ng a,*
PMCID: PMC2977804  PMID: 21583941

Abstract

The mol­ecule of the title compound, C9H5Cl2NO, is essentially planar [give maximum or r.m.s. deviation] and the hydr­oxy group acts as a hydrogen-bond donor to the N atom of a symmetry-related mol­ecule, generating a hydrogen-bonded dimer,which lies on a twofold rotation axis.

Related literature

Unlike quinolin-8-ol, which yields a large number of metal derivatives, 5,7-dichloro­quinolin-8-ol forms only a small number of metal chelates. For their crystal structures, see: García-Granda et al. (1987); Artizzu et al. (2007, 2008); Day et al. (1980); González-Baró et al. (1998); Horton & Wendlandt (1963); Miyashita et al. (2005); Suganuma et al. (2001); Van Deun et al. (2004).graphic file with name e-65-o1131-scheme1.jpg

Experimental

Crystal data

  • C9H5Cl2NO

  • M r = 214.04

  • Monoclinic, Inline graphic

  • a = 15.5726 (3) Å

  • b = 3.8062 (1) Å

  • c = 16.1269 (3) Å

  • β = 118.029 (1)°

  • V = 843.76 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 123 K

  • 0.36 × 0.09 × 0.02 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.782, T max = 0.986

  • 7279 measured reflections

  • 1919 independent reflections

  • 1644 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.112

  • S = 1.05

  • 1919 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014846/lh2808sup1.cif

e-65-o1131-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014846/lh2808Isup2.hkl

e-65-o1131-Isup2.hkl (94.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.84 (1) 2.01 (2) 2.761 (2) 150 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

I thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A hydrogen-bonded dimer of the title compound is shown in Fig. 1.

Experimental

The organic reactant was returned unchanged in an unsuccessful attempt at reacting it with a zinc salt in methanol.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 U(C). The hydroxy hydrogen atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of a hydrogen-bonded dimer of the title compound; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabeled molecule is related by the symmetry operator -x, y, -z+1/2

Crystal data

C9H5Cl2NO F(000) = 432
Mr = 214.04 Dx = 1.685 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 3573 reflections
a = 15.5726 (3) Å θ = 2.5–28.3°
b = 3.8062 (1) Å µ = 0.72 mm1
c = 16.1269 (3) Å T = 123 K
β = 118.029 (1)° Plate, colorless
V = 843.76 (3) Å3 0.36 × 0.09 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 1919 independent reflections
Radiation source: fine-focus sealed tube 1644 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −20→20
Tmin = 0.782, Tmax = 0.986 k = −4→4
7279 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.4949P] where P = (Fo2 + 2Fc2)/3
1919 reflections (Δ/σ)max < 0.001
122 parameters Δρmax = 0.55 e Å3
1 restraint Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.29367 (4) 0.38966 (13) 0.24587 (3) 0.02310 (17)
Cl2 0.44255 (4) 0.89258 (14) 0.59720 (3) 0.02635 (18)
O1 0.10638 (11) 0.6233 (4) 0.22642 (10) 0.0223 (3)
N1 0.07459 (12) 0.9357 (4) 0.36439 (11) 0.0186 (4)
H1 0.0565 (14) 0.729 (7) 0.220 (2) 0.051 (9)*
C1 0.18119 (14) 0.6852 (5) 0.31223 (13) 0.0176 (4)
C2 0.27416 (15) 0.5885 (5) 0.33230 (13) 0.0184 (4)
C3 0.35486 (14) 0.6504 (5) 0.42003 (14) 0.0193 (4)
H3 0.4180 0.5794 0.4316 0.023*
C4 0.34192 (14) 0.8134 (5) 0.48869 (13) 0.0183 (4)
C5 0.24865 (14) 0.9212 (5) 0.47354 (13) 0.0168 (4)
C6 0.16747 (14) 0.8502 (5) 0.38470 (13) 0.0170 (4)
C7 0.23008 (15) 1.0924 (5) 0.54108 (13) 0.0191 (4)
H7 0.2822 1.1462 0.6013 0.023*
C8 0.13659 (15) 1.1807 (5) 0.51946 (14) 0.0201 (4)
H8 0.1230 1.2970 0.5641 0.024*
C9 0.06103 (15) 1.0957 (5) 0.42978 (14) 0.0204 (4)
H9 −0.0036 1.1574 0.4155 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0336 (3) 0.0238 (3) 0.0188 (3) 0.00576 (19) 0.0180 (2) 0.00172 (18)
Cl2 0.0229 (3) 0.0305 (3) 0.0203 (3) 0.0002 (2) 0.0057 (2) −0.00406 (19)
O1 0.0229 (7) 0.0304 (8) 0.0137 (6) 0.0030 (6) 0.0086 (6) −0.0021 (5)
N1 0.0230 (8) 0.0202 (9) 0.0157 (7) 0.0008 (6) 0.0117 (6) 0.0020 (6)
C1 0.0242 (10) 0.0166 (9) 0.0139 (8) −0.0012 (7) 0.0105 (7) 0.0016 (7)
C2 0.0280 (10) 0.0158 (10) 0.0171 (9) 0.0009 (7) 0.0154 (8) 0.0016 (7)
C3 0.0223 (9) 0.0173 (10) 0.0215 (9) 0.0015 (7) 0.0130 (8) 0.0025 (8)
C4 0.0211 (9) 0.0182 (10) 0.0145 (8) −0.0019 (7) 0.0074 (7) 0.0014 (7)
C5 0.0216 (9) 0.0142 (9) 0.0164 (9) −0.0012 (7) 0.0104 (7) 0.0021 (7)
C6 0.0220 (9) 0.0161 (9) 0.0162 (9) −0.0010 (7) 0.0117 (7) 0.0010 (7)
C7 0.0276 (10) 0.0183 (10) 0.0143 (8) −0.0029 (8) 0.0122 (8) −0.0001 (7)
C8 0.0297 (10) 0.0187 (10) 0.0181 (9) −0.0013 (8) 0.0164 (8) −0.0007 (7)
C9 0.0263 (10) 0.0210 (10) 0.0200 (9) 0.0004 (8) 0.0160 (8) 0.0019 (7)

Geometric parameters (Å, °)

Cl1—C2 1.7337 (19) C3—H3 0.9500
Cl2—C4 1.7412 (19) C4—C5 1.416 (3)
O1—C1 1.346 (2) C5—C7 1.411 (3)
O1—H1 0.835 (10) C5—C6 1.422 (3)
N1—C9 1.318 (2) C7—C8 1.370 (3)
N1—C6 1.364 (2) C7—H7 0.9500
C1—C2 1.377 (3) C8—C9 1.408 (3)
C1—C6 1.428 (3) C8—H8 0.9500
C2—C3 1.402 (3) C9—H9 0.9500
C3—C4 1.364 (3)
C1—O1—H1 111 (2) C7—C5—C6 117.26 (17)
C9—N1—C6 117.95 (17) C4—C5—C6 118.24 (17)
O1—C1—C2 120.07 (17) N1—C6—C5 122.49 (17)
O1—C1—C6 121.87 (17) N1—C6—C1 117.25 (17)
C2—C1—C6 118.05 (17) C5—C6—C1 120.26 (17)
C1—C2—C3 122.49 (18) C8—C7—C5 119.71 (18)
C1—C2—Cl1 119.33 (15) C8—C7—H7 120.1
C3—C2—Cl1 118.17 (15) C5—C7—H7 120.1
C4—C3—C2 119.43 (18) C7—C8—C9 118.71 (17)
C4—C3—H3 120.3 C7—C8—H8 120.6
C2—C3—H3 120.3 C9—C8—H8 120.6
C3—C4—C5 121.50 (18) N1—C9—C8 123.88 (18)
C3—C4—Cl2 119.21 (15) N1—C9—H9 118.1
C5—C4—Cl2 119.28 (14) C8—C9—H9 118.1
C7—C5—C4 124.50 (18)
O1—C1—C2—C3 179.21 (17) C7—C5—C6—N1 −1.1 (3)
C6—C1—C2—C3 −0.9 (3) C4—C5—C6—N1 178.25 (17)
O1—C1—C2—Cl1 0.4 (3) C7—C5—C6—C1 178.50 (17)
C6—C1—C2—Cl1 −179.66 (14) C4—C5—C6—C1 −2.1 (3)
C1—C2—C3—C4 −0.2 (3) O1—C1—C6—N1 1.6 (3)
Cl1—C2—C3—C4 178.56 (15) C2—C1—C6—N1 −178.29 (17)
C2—C3—C4—C5 0.2 (3) O1—C1—C6—C5 −178.02 (17)
C2—C3—C4—Cl2 −179.52 (14) C2—C1—C6—C5 2.1 (3)
C3—C4—C5—C7 −179.67 (18) C4—C5—C7—C8 −179.00 (19)
Cl2—C4—C5—C7 0.0 (3) C6—C5—C7—C8 0.3 (3)
C3—C4—C5—C6 1.0 (3) C5—C7—C8—C9 0.3 (3)
Cl2—C4—C5—C6 −179.31 (14) C6—N1—C9—C8 −0.6 (3)
C9—N1—C6—C5 1.2 (3) C7—C8—C9—N1 −0.2 (3)
C9—N1—C6—C1 −178.39 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.84 (1) 2.01 (2) 2.761 (2) 150 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2808).

References

  1. Artizzu, F., Bernot, K., Caneschi, A., Coronado, E., Clemente-Juan, J. M., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A. & Deplano, P. (2008). Eur. J. Inorg. Chem. pp. 3829–3826.
  2. Artizzu, F., Marchiò, L., Mercuri, M. L., Pilia, L., Serpe, A., Quochi, F., Orrù, R., Cordella, F., Saba, M., Mura, A., Bongiovanni, G. & Deplano, P. (2007). Adv. Func. Mater.17, 2365–2376.
  3. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  4. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Day, R. O., Batschelet, W. H. & Archer, R. D. (1980). Inorg. Chem.19, 2113–2122.
  6. García-Granda, S., Beurskens, P. T., Behm, H. J. J. & Gómez-Beltrán, F. (1987). Acta Cryst. C43, 39–41.
  7. González-Baró, A. C., Piro, O. E., Parajón-Costa, B. S., Baran, E. J. & Castellano, E. E. (1998). Monatsh. Chem.129, 31–39.
  8. Horton, G. R. & Wendlandt, W. W. (1963). J. Inorg. Nucl. Chem.25, 247–252.
  9. Miyashita, Y., Ohashi, T., Imai, A., Amir, N., Fujisawa, K. & Okamoto, K.-I. (2005). Sci. Technol. Adv. Mater.6 660–666.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Suganuma, S., Tanada, A., Tomizawa, H., Tanaka, M. & Miki, E. (2001). Inorg. Chim. Acta, 320, 22–30.
  13. Van Deun, R., Fias, P., Nockemann, P., Schepers, A., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2004). Inorg. Chem.43, 8461–8469. [DOI] [PubMed]
  14. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014846/lh2808sup1.cif

e-65-o1131-sup1.cif (13.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014846/lh2808Isup2.hkl

e-65-o1131-Isup2.hkl (94.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES