Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 30;65(Pt 5):o1182. doi: 10.1107/S1600536809015980

6-Bromo-1-methyl-1H-2,1-benzothia­zin-4(3H)-one 2,2-dioxide

Muhammad Shafiq a, M Nawaz Tahir b,*, Islam Ullah Khan a, Muhammad Nadeem Arshad a, Muhammad Nadeem Asghar a
PMCID: PMC2977846  PMID: 21583983

Abstract

In the crystal structure of the title compound, C9H8BrNO3S, the thia­zine ring is in the twisted form. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds form inversion dimers with an R 2 2(8) ring motif. Weak inter­molecular C—H⋯Br and C—H⋯π inter­actions are also present.

Related literature

For the structures of benzothia­zine derivatives, see: Arshad et al. (2008); Shafiq et al. (2008a ,b ); Tahir et al. (2008). For the related structure, 6-bromo-1-methyl-1H-benzo[c][1,2]thia­zin-4(3H)-one 2,2-dioxide, see: Shafiq et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For the synthesis, see: Lombardino (1972).graphic file with name e-65-o1182-scheme1.jpg

Experimental

Crystal data

  • C9H8BrNO3S

  • M r = 290.13

  • Monoclinic, Inline graphic

  • a = 5.4577 (3) Å

  • b = 12.6400 (8) Å

  • c = 15.1258 (10) Å

  • β = 96.204 (2)°

  • V = 1037.35 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.15 mm−1

  • T = 296 K

  • 0.20 × 0.17 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.439, T max = 0.540

  • 11077 measured reflections

  • 2234 independent reflections

  • 1709 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.072

  • S = 1.04

  • 2234 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015980/fb2142sup1.cif

e-65-o1182-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015980/fb2142Isup2.hkl

e-65-o1182-Isup2.hkl (107.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.54 3.308 (4) 140
C8—H8A⋯O2ii 0.97 2.54 3.470 (3) 162
C9—H9B⋯O3 0.96 2.41 2.824 (3) 106
C5—H5⋯Br1iii 0.93 2.94 3.871 (3) 175
C9—H9A⋯Br1iv 0.96 3.01 3.871 (2) 150
C9—H9CCg1v 0.96 2.83 3.449 (3) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1 is the centroid of the C1–C6 ring.

Acknowledgments

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120567-PS2–276).

supplementary crystallographic information

Comment

We have reported crystal structures of the synthesized derivatives of the benzothiazine molecule (Shafiq et al., 2008a; Shafiq et al., 2008b; Tahir et al., 2008; Arshad et al., 2008). Here we report the title compound (I), (Fig. 1), that belongs to this series of the structures.

(I) is closely related to the crystal structure of 6-bromo-1-methyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide, (II), (Shafiq et al., 2009). (I) and (II) differ by the presence of the methyl and ethyl groups at the N-atom, respectively. The bromo-substituted benzene ring A (C1—C6) is planar with Br deviated by 0.064 (4) Å from the mean plane. The thiazine ring B (S1/N1/C1/C6—C8) is in the twisted form, with the maximum puckering amplitude QT = 0.577 (2) Å (Cremer & Pople, 1975). The title molecules form dimers interconnected by a pair of the intermolecular H-bonds C8–H8A···O2i [symmetry code: i = -x + 1, -y, -z + 1] with the R22(8) ring motif (Bernstein et al., 1995), (Tab. 1, Fig. 2). The dimers are linked to each other forming helices through the other intermolecular H-bonding C3–H3···O3ii [symmetry code: ii = -x + 3/2, y + 1/2, -z + 1/2]. The molecules are also stabilized due to C—H···π-electron interaction with the benzene group and intermolecular C—H···Br interactions (Tab. 1).

Experimental

The title compound was prepared in a three step scheme following the reported procedure (Lombardino, 1972). In the first step, methyl-2-amino-5-bromobenzoate (92 mg, 4 mmol) was put in dichloromethane (10 ml) and this mixture was introduced into a round bottom flask. A solution of methanesulfonyl chloride (550 mg, 4.8 mmol) in dichloromethane (10 ml) was slowly added (10-15 minutes) to this mixture. The mixture was stirred at 60–70 °C for 2–3 days keeping pH of the mixture alkaline by triethylamine. After the completion of the reaction, the solvent was evaporated under reduced pressure to get methyl-5-bromo-2-[(methylsulfonyl)amino] benzoate.

In the second step, methyl-5-bromo-2-[(methylsulfonyl)amino] benzoate (1.02 g, 3.3 mmol) was introduced into 5 ml of N,N-dimethylformamide (DMF). The mixture was added to a suspension of NaH (158.38 mg, 6.6 mmol) in DMF (10 ml). The mixture was stirred at room temperature for 14–16 h. After that, methyl-5-bromo-2-[methyl(methylsulfonyl)amino]benzoate was obtained.

In the third step methyl-5-bromo-2-[methyl(methylsulfonyl)amino]benzoate was cyclized. Therefore methyl-5-bromo-2-[methyl(methylsulfonyl)amino]benzoate (418.83 mg, 1.3 mmol) was introduced in DMF (5 ml) and added to the suspension of NaH (59.99 mg, 2.5 mmol) in DMF (10 ml). The mixture was stirred at room temperature for 3–4 h. Then the reaction mixture was poured into ice and clear solution was obtained. The pH of this solution was adjusted between 5–6. The precipitated crude product was recrystallized from ethanol. Yellow needle-shaped crystals of the title compound of suitable size for structure analysis were grown in this way.

Refinement

Though all the hydrogens were discernible in the difference electron density map, the H-atoms were situated into idealized positions, with C-H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H, resepctively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for other carrier atoms.

Figures

Fig. 1.

Fig. 1.

The title compound, with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The H-atoms are shown by small circles of arbitrary radius. The dotted lines show the intramolecular H-bonds.

Fig. 2.

Fig. 2.

A section of the title structure showing the dimers bind by the hydrogen bonds.

Crystal data

C9H8BrNO3S F(000) = 576
Mr = 290.13 Dx = 1.858 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2234 reflections
a = 5.4577 (3) Å θ = 2.1–27.0°
b = 12.6400 (8) Å µ = 4.15 mm1
c = 15.1258 (10) Å T = 296 K
β = 96.204 (2)° Prism, yellow
V = 1037.35 (11) Å3 0.20 × 0.17 × 0.15 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2234 independent reflections
Radiation source: fine-focus sealed tube 1709 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 7.40 pixels mm-1 θmax = 27.0°, θmin = 2.1°
ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −16→16
Tmin = 0.439, Tmax = 0.540 l = −18→19
11077 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: difference Fourier map
wR(F2) = 0.072 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.4349P] where P = (Fo2 + 2Fc2)/3
2234 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.35 e Å3
31 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.06150 (6) 0.57510 (2) 0.36727 (2) 0.05871 (14)
S1 0.74473 (12) 0.10243 (5) 0.40740 (4) 0.03706 (17)
O1 0.3779 (4) 0.23972 (17) 0.56688 (14) 0.0606 (6)
O2 0.5116 (4) 0.05733 (15) 0.37692 (14) 0.0529 (5)
O3 0.9592 (4) 0.03989 (16) 0.40469 (14) 0.0555 (6)
N1 0.7895 (4) 0.21290 (17) 0.35343 (14) 0.0385 (5)
C1 0.6129 (4) 0.29366 (19) 0.35581 (16) 0.0326 (6)
C2 0.5631 (5) 0.3622 (2) 0.28382 (19) 0.0403 (6)
H2 0.6430 0.3525 0.2332 0.048*
C3 0.3980 (5) 0.4437 (2) 0.2866 (2) 0.0430 (7)
H3 0.3650 0.4882 0.2378 0.052*
C4 0.2814 (5) 0.4595 (2) 0.36193 (19) 0.0409 (6)
C5 0.3200 (5) 0.3919 (2) 0.43312 (19) 0.0416 (6)
H5 0.2368 0.4024 0.4829 0.050*
C6 0.4846 (4) 0.3073 (2) 0.43087 (17) 0.0362 (6)
C7 0.5129 (5) 0.2357 (2) 0.50864 (18) 0.0407 (6)
C8 0.7204 (5) 0.1553 (2) 0.51326 (17) 0.0419 (6)
H8A 0.6884 0.0989 0.5540 0.050*
H8B 0.8745 0.1891 0.5355 0.050*
C9 0.9601 (4) 0.2116 (2) 0.28524 (19) 0.0415 (6)
H9A 0.8798 0.1812 0.2316 0.062*
H9B 1.1024 0.1701 0.3057 0.062*
H9C 1.0102 0.2826 0.2737 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0680 (2) 0.0468 (2) 0.0609 (2) 0.02306 (14) 0.00505 (16) 0.00177 (15)
S1 0.0439 (3) 0.0358 (4) 0.0327 (4) 0.0072 (3) 0.0098 (3) 0.0042 (3)
O1 0.0815 (14) 0.0670 (14) 0.0380 (12) 0.0261 (11) 0.0282 (11) 0.0127 (11)
O2 0.0603 (12) 0.0441 (12) 0.0541 (14) −0.0125 (9) 0.0050 (10) 0.0006 (10)
O3 0.0652 (12) 0.0557 (13) 0.0489 (13) 0.0284 (10) 0.0214 (10) 0.0133 (10)
N1 0.0420 (11) 0.0415 (13) 0.0350 (13) 0.0070 (9) 0.0179 (10) 0.0092 (10)
C1 0.0345 (12) 0.0319 (14) 0.0317 (15) −0.0013 (10) 0.0052 (10) 0.0010 (11)
C2 0.0446 (14) 0.0398 (15) 0.0382 (17) 0.0001 (11) 0.0127 (12) 0.0070 (12)
C3 0.0523 (15) 0.0346 (15) 0.0423 (17) −0.0010 (12) 0.0061 (13) 0.0102 (12)
C4 0.0426 (13) 0.0343 (14) 0.0453 (18) 0.0060 (11) 0.0026 (12) −0.0001 (13)
C5 0.0483 (15) 0.0431 (15) 0.0347 (16) 0.0084 (12) 0.0104 (12) −0.0017 (13)
C6 0.0415 (13) 0.0386 (15) 0.0288 (15) 0.0030 (11) 0.0051 (11) 0.0017 (11)
C7 0.0502 (14) 0.0431 (16) 0.0296 (15) 0.0072 (12) 0.0080 (12) 0.0006 (12)
C8 0.0523 (15) 0.0464 (17) 0.0274 (15) 0.0104 (12) 0.0058 (12) 0.0057 (12)
C9 0.0403 (13) 0.0444 (16) 0.0425 (17) −0.0026 (11) 0.0171 (12) −0.0018 (13)

Geometric parameters (Å, °)

Br1—C4 1.898 (3) C3—C4 1.379 (4)
S1—O3 1.4169 (19) C3—H3 0.9300
S1—O2 1.424 (2) C4—C5 1.372 (4)
S1—N1 1.649 (2) C5—C6 1.400 (3)
S1—C8 1.753 (3) C5—H5 0.9300
O1—C7 1.209 (3) C6—C7 1.479 (4)
N1—C1 1.407 (3) C7—C8 1.518 (3)
N1—C9 1.463 (3) C8—H8A 0.9700
C1—C2 1.395 (3) C8—H8B 0.9700
C1—C6 1.407 (3) C9—H9A 0.9600
C2—C3 1.373 (4) C9—H9B 0.9600
C2—H2 0.9300 C9—H9C 0.9600
O3—S1—O2 118.63 (13) C4—C5—C6 120.1 (2)
O3—S1—N1 106.93 (11) C4—C5—H5 120.0
O2—S1—N1 110.70 (12) C6—C5—H5 120.0
O3—S1—C8 112.54 (13) C5—C6—C1 119.3 (2)
O2—S1—C8 107.17 (13) C5—C6—C7 117.4 (2)
N1—S1—C8 99.15 (12) C1—C6—C7 123.2 (2)
C1—N1—C9 121.1 (2) O1—C7—C6 122.3 (2)
C1—N1—S1 117.60 (16) O1—C7—C8 120.3 (2)
C9—N1—S1 118.62 (17) C6—C7—C8 117.4 (2)
C2—C1—N1 120.5 (2) C7—C8—S1 110.06 (18)
C2—C1—C6 118.8 (2) C7—C8—H8A 109.6
N1—C1—C6 120.8 (2) S1—C8—H8A 109.6
C3—C2—C1 121.1 (2) C7—C8—H8B 109.6
C3—C2—H2 119.5 S1—C8—H8B 109.6
C1—C2—H2 119.5 H8A—C8—H8B 108.2
C2—C3—C4 119.8 (3) N1—C9—H9A 109.5
C2—C3—H3 120.1 N1—C9—H9B 109.5
C4—C3—H3 120.1 H9A—C9—H9B 109.5
C5—C4—C3 120.9 (2) N1—C9—H9C 109.5
C5—C4—Br1 119.3 (2) H9A—C9—H9C 109.5
C3—C4—Br1 119.8 (2) H9B—C9—H9C 109.5
O3—S1—N1—C1 −172.74 (19) Br1—C4—C5—C6 −179.0 (2)
O2—S1—N1—C1 56.7 (2) C4—C5—C6—C1 1.2 (4)
C8—S1—N1—C1 −55.7 (2) C4—C5—C6—C7 −178.3 (2)
O3—S1—N1—C9 25.6 (2) C2—C1—C6—C5 −3.1 (4)
O2—S1—N1—C9 −105.0 (2) N1—C1—C6—C5 176.5 (2)
C8—S1—N1—C9 142.7 (2) C2—C1—C6—C7 176.5 (2)
C9—N1—C1—C2 12.8 (4) N1—C1—C6—C7 −3.9 (4)
S1—N1—C1—C2 −148.4 (2) C5—C6—C7—O1 9.9 (4)
C9—N1—C1—C6 −166.8 (2) C1—C6—C7—O1 −169.7 (3)
S1—N1—C1—C6 32.0 (3) C5—C6—C7—C8 −170.1 (2)
N1—C1—C2—C3 −177.5 (2) C1—C6—C7—C8 10.3 (4)
C6—C1—C2—C3 2.0 (4) O1—C7—C8—S1 139.9 (2)
C1—C2—C3—C4 0.9 (4) C6—C7—C8—S1 −40.0 (3)
C2—C3—C4—C5 −2.8 (4) O3—S1—C8—C7 170.50 (19)
C2—C3—C4—Br1 177.9 (2) O2—S1—C8—C7 −57.3 (2)
C3—C4—C5—C6 1.7 (4) N1—S1—C8—C7 57.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3i 0.93 2.54 3.308 (4) 140
C8—H8A···O2ii 0.97 2.54 3.470 (3) 162
C9—H9B···O3 0.96 2.41 2.824 (3) 106
C5—H5···Br1iii 0.93 2.94 3.871 (3) 175
C9—H9A···Br1iv 0.96 3.01 3.871 (2) 150
C9—H9C···Cg1v 0.96 2.83 3.449 (3) 123

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x+1/2, y−1/2, −z+1/2; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2142).

References

  1. Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Lombardino, J. G. (1972). J. Heterocycl. Chem.9, 315–317.
  9. Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008a). Acta Cryst. E64, o558. [DOI] [PMC free article] [PubMed]
  10. Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008b). Acta Cryst. E64, o1270. [DOI] [PMC free article] [PubMed]
  11. Shafiq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Safdar, M. (2009). Acta Cryst. E65, o393. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015980/fb2142sup1.cif

e-65-o1182-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015980/fb2142Isup2.hkl

e-65-o1182-Isup2.hkl (107.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES