Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(16):6201–6205. doi: 10.1073/pnas.86.16.6201

Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data.

K H Wolfe 1, M Gouy 1, Y W Yang 1, P M Sharp 1, W H Li 1
PMCID: PMC297805  PMID: 2762323

Abstract

The divergence between monocots and dicots represents a major event in higher plant evolution, yet the date of its occurrence remains unknown because of the scarcity of relevant fossils. We have estimated this date by reconstructing phylogenetic trees from chloroplast DNA sequences, using two independent approaches: the rate of synonymous nucleotide substitution was calibrated from the divergence of maize, wheat, and rice, whereas the rate of nonsynonymous substitution was calibrated from the divergence of angiosperms and bryophytes. Both methods lead to an estimate of the monocot-dicot divergence at 200 million years (Myr) ago (with an uncertainty of about 40 Myr). This estimate is also supported by analyses of the nuclear genes encoding large and small subunit ribosomal RNAs. These results imply that the angiosperm lineage emerged in Jurassic-Triassic time, which considerably predates its appearance in the fossil record (approximately 120 Myr ago). We estimate the divergence between cycads and angiosperms to be approximately 340 Myr, which can be taken as an upper bound for the age of angiosperms.

Full text

PDF
6201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capel-Edwards K., Atkinson R. M., Wheeldon J. M., Pratt D. A., Patterson G. G., Harman I. W., Foord R. D. Effect of timing of cefuroxime dosage on its protection of rats against gentamicin nephrotoxicity. Infection. 1980;8(1):41–42. doi: 10.1007/BF01677398. [DOI] [PubMed] [Google Scholar]
  2. Chao S., Sederoff R., Levings C. S., 3rd Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria. Nucleic Acids Res. 1984 Aug 24;12(16):6629–6644. doi: 10.1093/nar/12.16.6629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gouy M., Li W. H. Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi. Mol Biol Evol. 1989 Mar;6(2):109–122. doi: 10.1093/oxfordjournals.molbev.a040536. [DOI] [PubMed] [Google Scholar]
  4. Gray M. W., Boer P. H. Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond B Biol Sci. 1988 May 31;319(1193):135–147. doi: 10.1098/rstb.1988.0038. [DOI] [PubMed] [Google Scholar]
  5. Gutell R. R., Fox G. E. A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res. 1988;16 (Suppl):r175–r269. doi: 10.1093/nar/16.suppl.r175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hori H., Lim B. L., Osawa S. Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci U S A. 1985 Feb;82(3):820–823. doi: 10.1073/pnas.82.3.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  8. Li W. H., Wu C. I., Luo C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol. 1985 Mar;2(2):150–174. doi: 10.1093/oxfordjournals.molbev.a040343. [DOI] [PubMed] [Google Scholar]
  9. Remy W. Lower devonian gametophytes: relation to the phylogeny of land plants. Science. 1982 Mar 26;215(4540):1625–1627. doi: 10.1126/science.215.4540.1625. [DOI] [PubMed] [Google Scholar]
  10. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  11. Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wolfe K. H., Sharp P. M. Identification of functional open reading frames in chloroplast genomes. Gene. 1988 Jun 30;66(2):215–222. doi: 10.1016/0378-1119(88)90358-7. [DOI] [PubMed] [Google Scholar]
  13. Zurawski G., Clegg M. T., Brown A. H. The Nature of Nucleotide Sequence Divergence between Barley and Maize Chloroplast DNA. Genetics. 1984 Apr;106(4):735–749. doi: 10.1093/genetics/106.4.735. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES