Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(16):6408–6411. doi: 10.1073/pnas.86.16.6408

Central vasopressin infusion prevents hibernation in the European hamster (Cricetus cricetus).

M L Hermes 1, R M Buijs 1, M Masson-Pévet 1, T P van der Woude 1, P Pévet 1, R Brenklé 1, R Kirsch 1
PMCID: PMC297849  PMID: 2762331

Abstract

The amount of immunocytochemically detectable vasopressin in the brain of the European hamster (Cricetus cricetus) shows a seasonal variation; i.e., dense vasopressin immunoreactivity is present in the lateral septum during summer but is absent in autumn and winter [Buijs, R. M., Pévet, P., Masson-Pévet, M., Pool, C. W., De Vries, G. J., Canguilhem, B. & Vivien-Roels, B. (1986) Brain Res. 371, 193-196]. In the winter period the European hamster hibernates. Since vasopressin in the lateral septum is known to be involved in the control of body temperature, we investigated whether infusion of vasopressin in the lateral septum during autumn-winter could influence hypothermic patterns normally seen in hibernating animals. Hamsters whose lateral septum was infused with vasopressin showed almost no periods of hypothermia, whereas hamsters treated with control infusions displayed a normal hibernation pattern. The results indicate that persistence of vasopressin release in the lateral septum of the European hamster during winter can prevent hibernation.

Full text

PDF
6408

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banet M., Wieland U. E. The effect of intraseptally applied vasopressin on thermoregulation in the rat. Brain Res Bull. 1985 Feb;14(2):113–116. doi: 10.1016/0361-9230(85)90070-x. [DOI] [PubMed] [Google Scholar]
  2. Buijs R. M. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 1978 Sep 26;192(3):423–435. doi: 10.1007/BF00212323. [DOI] [PubMed] [Google Scholar]
  3. Buijs R. M., Pévet P., Masson-Pévet M., Pool C. W., de Vries G. J., Canguilhem B., Vivien-Roels B. Seasonal variation in vasopressin innervation in the brain of the European hamster (Cricetus cricetus). Brain Res. 1986 Apr 16;371(1):193–196. doi: 10.1016/0006-8993(86)90829-2. [DOI] [PubMed] [Google Scholar]
  4. Cooper K. E., Kasting N. W., Lederis K., Veale W. L. Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep. J Physiol. 1979 Oct;295:33–45. doi: 10.1113/jphysiol.1979.sp012953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Vries G. J., Buijs R. M. The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 1983 Aug 29;273(2):307–317. doi: 10.1016/0006-8993(83)90855-7. [DOI] [PubMed] [Google Scholar]
  6. Hermes Michael L. H. J., Buijs Ruud M., Van Heerikhuize Joop J., Van Den Born Jaap, Van Der Woude Tjitske P. Oxytocin Neurotransmission in the A1-area of the Brainstem Induces Hormonal Vasopressin Release in Rats. Eur J Neurosci. 1989 Mar;1(2):148–153. doi: 10.1111/j.1460-9568.1989.tb00782.x. [DOI] [PubMed] [Google Scholar]
  7. Hoorneman E. M., Buijs R. M. Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res. 1982 Jul 15;243(2):235–241. doi: 10.1016/0006-8993(82)90246-3. [DOI] [PubMed] [Google Scholar]
  8. Malkinson T. J., Bridges T. E., Lederis K., Veale W. L. Perfusion of the septum of the rabbit with vasopressin antiserum enhances endotoxin fever. Peptides. 1987 Mar-Apr;8(2):385–389. doi: 10.1016/0196-9781(87)90115-x. [DOI] [PubMed] [Google Scholar]
  9. Sheridan P. J. The nucleus interstitialis striae terminalis and the nucleus amygdaloideus medialis: prime targets for androgen in the rat forebrain. Endocrinology. 1979 Jan;104(1):130–136. doi: 10.1210/endo-104-1-130. [DOI] [PubMed] [Google Scholar]
  10. Sofroniew M. V., Weindl A. Extrahypothalamic neurophysin-containing perikarya, fiber pathways and fiber clusters in the rat brain. Endocrinology. 1978 Jan;102(1):334–337. doi: 10.1210/endo-102-1-334. [DOI] [PubMed] [Google Scholar]
  11. Stumpf W. E., Sar M. Steroid hormone target sites in the brain: the differential distribution of estrogin, progestin, androgen and glucocorticosteroid. J Steroid Biochem. 1976 Nov-Dec;7(11-12):1163–1170. doi: 10.1016/0022-4731(76)90050-9. [DOI] [PubMed] [Google Scholar]
  12. de Vries G. J., Buijs R. M., Sluiter A. A. Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res. 1984 Apr 23;298(1):141–145. doi: 10.1016/0006-8993(84)91157-0. [DOI] [PubMed] [Google Scholar]
  13. van Leeuwen F. W., Caffe A. R., De Vries G. J. Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens. Brain Res. 1985 Jan 28;325(1-2):391–394. doi: 10.1016/0006-8993(85)90348-8. [DOI] [PubMed] [Google Scholar]
  14. van Leeuwen F., Caffé R. Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat. Cell Tissue Res. 1983;228(3):525–534. doi: 10.1007/BF00211473. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES