Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Aug;86(16):6417–6420. doi: 10.1073/pnas.86.16.6417

Age-related development of a heterozygous phenotype in solitary neurons of the homozygous Brattleboro rat.

F van Leeuwen 1, E van der Beek 1, M Seger 1, P Burbach 1, R Ivell 1
PMCID: PMC297851  PMID: 2762332

Abstract

A single-base deletion in the single-copy vasopressin gene is the cause of diabetes insipidus in the homozygous Brattleboro rat (di/di). It results in the synthesis of an altered vasopressin precursor of which the axonal transport is blocked. Paradoxically, a small number of solitary hypothalamic neurons displays all the immunoreactivities of the wild-type vasopressin precursor (i.e., vasopressin, neurophysin, and a glycopeptide). In the present paper we provide evidence that these neurons have undergone a switch to a genuine heterozygous (di/+) phenotype; i.e., they contain the immunoreactivities of both the wild-type and the mutated vasopressin precursors. In the neural lobe, glycopeptide fibers are also present, showing that axonal transport of the wild-type precursor is restored. Moreover, the number of neurons displaying this di/+ phenotype increases markedly and in a linear way (from 0.1% up to 3% of the vasopressin cells) with age. These findings indicate that after mitotic division has ceased, genomic alterations occur in somatic neurons in vivo. The molecular event generating the di/+ phenotype in the di/di animal could involve a somatic intrachromosomal gene conversion between the homologous exons of the vasopressin and the related oxytocin genes.

Full text

PDF
6417

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman J., Bayer S. A. Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J Comp Neurol. 1978 Dec 15;182(4 Pt 2):945–971. doi: 10.1002/cne.901820511. [DOI] [PubMed] [Google Scholar]
  2. Ben-Barak Y., Russell J. T., Whitnall M. H., Ozato K., Gainer H. Neurophysin in the hypothalamo-neurohypophysial system. I. Production and characterization of monoclonal antibodies. J Neurosci. 1985 Jan;5(1):81–97. doi: 10.1523/JNEUROSCI.05-01-00081.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bohr V. A., Wassermann K. DNA repair at the level of the gene. Trends Biochem Sci. 1988 Nov;13(11):429–433. doi: 10.1016/0968-0004(88)90216-2. [DOI] [PubMed] [Google Scholar]
  4. Boorsma D. M., Streefkerk J. G. Periodate or glutaraldehyde for preparing peroxidase conjugates? J Immunol Methods. 1979;30(3):245–255. doi: 10.1016/0022-1759(79)90098-x. [DOI] [PubMed] [Google Scholar]
  5. Burbach J. P., De Hoop M. J., Schmale H., Richter D., De Kloet E. R., Ten Haaf J. A., De Wied D. Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology. 1984 Dec;39(6):582–584. doi: 10.1159/000124040. [DOI] [PubMed] [Google Scholar]
  6. Dogterom J., van Wimersma Greidanus T. B., De Wied D. Vasopressin in cerebrospinal fluid and plasma of man, dog, and rat. Am J Physiol. 1978 May;234(5):E463–E467. doi: 10.1152/ajpendo.1978.234.5.E463. [DOI] [PubMed] [Google Scholar]
  7. Guldenaar S. E., Nahke P., Pickering B. T. Immunocytochemical evidence for the presence of a mutant vasopressin precursor in the supraoptic nucleus of the homozygous Brattleboro rat. Cell Tissue Res. 1986;244(2):431–436. doi: 10.1007/BF00219218. [DOI] [PubMed] [Google Scholar]
  8. Guldenaar S. E., Pickering B. T. Mutant vasopressin precursor in the endoplasmic reticulum of the Brattleboro rat. Ultrastructural evidence from individual "vasopressin" cells localized with the light microscope by use of a new gold/silver method for immunostain enhancement. Cell Tissue Res. 1988 Sep;253(3):671–676. doi: 10.1007/BF00219759. [DOI] [PubMed] [Google Scholar]
  9. Ivell R., Richter D. Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2006–2010. doi: 10.1073/pnas.81.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krisch B., Nahke P., Richter D. Immunocytochemical staining of supraoptic neurons from homozygous Brattleboro rats by use of antibodies against two domains of the mutated vasopressin precursor. Cell Tissue Res. 1986;244(2):351–358. doi: 10.1007/BF00219211. [DOI] [PubMed] [Google Scholar]
  11. Mezey E., Seidah N. G., Chretien M., Brownstein M. J. Demonstration of the vasopressin associated glycopeptide in the brain and peripheral tissues of the Brattleboro rat. Neuropeptides. 1986 Jan;7(1):79–85. doi: 10.1016/0143-4179(86)90082-x. [DOI] [PubMed] [Google Scholar]
  12. Mohr E., Schmitz E., Richter D. A single rat genomic DNA fragment encodes both the oxytocin and vasopressin genes separated by 11 kilobases and oriented in opposite transcriptional directions. Biochimie. 1988 May;70(5):649–654. doi: 10.1016/0300-9084(88)90249-0. [DOI] [PubMed] [Google Scholar]
  13. Ollo R., Rougeon F. Gene conversion and polymorphism: generation of mouse immunoglobulin gamma 2a chain alleles by differential gene conversion by gamma 2b chain gene. Cell. 1983 Feb;32(2):515–523. doi: 10.1016/0092-8674(83)90471-3. [DOI] [PubMed] [Google Scholar]
  14. Richards S. J., Morris R. J., Raisman G. Solitary magnocellular neurons in the homozygous Brattleboro rat have vasopressin and glycopeptide immunoreactivity. Neuroscience. 1985 Nov;16(3):617–623. doi: 10.1016/0306-4522(85)90196-4. [DOI] [PubMed] [Google Scholar]
  15. Sablitzky F., Wildner G., Rajewsky K. Somatic mutation and clonal expansion of B cells in an antigen-driven immune response. EMBO J. 1985 Feb;4(2):345–350. doi: 10.1002/j.1460-2075.1985.tb03635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmale H., Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature. 1984 Apr 19;308(5961):705–709. doi: 10.1038/308705a0. [DOI] [PubMed] [Google Scholar]
  17. Schöler J., Sladek J. R., Jr Supraoptic nucleus of the Brattleboro rat has an altered afferent noradrenergic input. Science. 1981 Oct 16;214(4518):347–349. doi: 10.1126/science.7053181. [DOI] [PubMed] [Google Scholar]
  18. Seemann G. H., Rein R. S., Brown C. S., Ploegh H. L. Gene conversion-like mechanisms may generate polymorphism in human class I genes. EMBO J. 1986 Mar;5(3):547–552. doi: 10.1002/j.1460-2075.1986.tb04245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Seger M. A., Burbach J. P. The presence and in vivo biosynthesis of fragments of CPP (the C-terminal glycopeptide of the rat vasopressin precursor) in the hypothalamo-neurohypophyseal system. Peptides. 1987 Sep-Oct;8(5):757–762. doi: 10.1016/0196-9781(87)90054-4. [DOI] [PubMed] [Google Scholar]
  20. Sherman T. G., Day R., Civelli O., Douglass J., Herbert E., Akil H., Watson S. J. Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: coordinate responses to further osmotic challenge. J Neurosci. 1988 Oct;8(10):3785–3796. doi: 10.1523/JNEUROSCI.08-10-03785.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Slightom J. L., Blechl A. E., Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. doi: 10.1016/0092-8674(80)90426-2. [DOI] [PubMed] [Google Scholar]
  22. Swaab D. F., Nijveldt F., Pool C. W. Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol. 1975 Dec;67(3):461–462. doi: 10.1677/joe.0.0670461. [DOI] [PubMed] [Google Scholar]
  23. Valtin H. The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls. Ann N Y Acad Sci. 1982;394:1–9. doi: 10.1111/j.1749-6632.1982.tb37405.x. [DOI] [PubMed] [Google Scholar]
  24. Young W. S., 3rd, Mezey E., Siegel R. E. Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: analysis by quantitative in situ hybridization histochemistry. Brain Res. 1986 Dec;387(3):231–241. doi: 10.1016/0169-328x(86)90029-x. [DOI] [PubMed] [Google Scholar]
  25. van Leeuwen F. W., Caffé R., van der Sluis P. J., Sluiter A. A., van der Woude T. P., Seidah N. G., Chrétien M. Propressophysin is present in neurones at multiple sites in Wistar and homozygous Brattleboro rat brain. Brain Res. 1986 Jul 30;379(1):171–175. doi: 10.1016/0006-8993(86)90272-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES