Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6484–6487. doi: 10.1073/pnas.86.17.6484

The alpha 3 beta 3 complex, the catalytic core of F1-ATPase.

K Miwa 1, M Yoshida 1
PMCID: PMC297868  PMID: 2528144

Abstract

The alpha 3 beta 3 complex was reconstituted from alpha and beta subunits of the thermophilic bacterium PS3 F1-ATPase (TF1) and then isolated. It is less stable at high and low temperatures than TF1, and the complex dissociates into subunits during native polyacrylamide gel electrophoresis. The alpha 3 beta 3 complex has about 20% of the ATPase activity of TF1. Its enzymic properties are similar to those of the native TF1, exhibiting similar cooperative kinetics as a function of ATP concentration, similar substrate specificity for nucleotide triphosphates, and the presence of two peaks in its temperature-activity profile. Differing from TF1, the ATPase activity of the alpha 3 beta 3 complex is insensitive to N3- inhibition, its divalent cation specificity is less stringent, and its optimum pH shifts to the alkaline side. The addition of the gamma subunit to the alpha 3 beta 3 complex leads to the formation of the alpha 3 beta 3 gamma complex, indicating that the alpha 3 beta 3 complex is an intermediate in the process of assembly of the holoenzyme from each subunit. These results definitely show that the essential structure for eliciting the ATPase activity of F1-ATPase is trimeric alpha beta pairs and that the kinetic cooperativity of the F1-ATPase is an inherent property of this trimeric structure but is not due to the presence of single-copy subunits. In this sense, the alpha 3 beta 3 complex is the catalytic core of F1-ATPase.

Full text

PDF
6484

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akey C. W., Dunn S. D., Spitsberg V., Edelstein S. J. Electron microscopy of single molecules and crystals of F1-ATPases. Methods Enzymol. 1986;126:434–446. doi: 10.1016/s0076-6879(86)26043-7. [DOI] [PubMed] [Google Scholar]
  2. Arai H., Terres G., Pink S., Forgac M. Topography and subunit stoichiometry of the coated vesicle proton pump. J Biol Chem. 1988 Jun 25;263(18):8796–8802. [PubMed] [Google Scholar]
  3. Boyer P. D. The unusual enzymology of ATP synthase. Biochemistry. 1987 Dec 29;26(26):8503–8507. doi: 10.1021/bi00400a001. [DOI] [PubMed] [Google Scholar]
  4. Cross R. L., Grubmeyer C., Penefsky H. S. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites. J Biol Chem. 1982 Oct 25;257(20):12101–12105. [PubMed] [Google Scholar]
  5. Cunningham D., Cross R. L. Catalytic site occupancy during ATP hydrolysis by MF1-ATPase. Evidence for alternating high affinity sites during steady-state turnover. J Biol Chem. 1988 Dec 15;263(35):18850–18856. [PubMed] [Google Scholar]
  6. Dunn S. D., Futai M. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem. 1980 Jan 10;255(1):113–118. [PubMed] [Google Scholar]
  7. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  8. Futai M. Reconstitution of ATPase activity from the isolated alpha, beta, and gamma subunits of the coupling factor, F1, of Escherichia coli. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1231–1237. doi: 10.1016/0006-291x(77)91138-x. [DOI] [PubMed] [Google Scholar]
  9. Konishi J., Wakagi T., Oshima T., Yoshida M. Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem. 1987 Dec;102(6):1379–1387. doi: 10.1093/oxfordjournals.jbchem.a122184. [DOI] [PubMed] [Google Scholar]
  10. Muneyuki E., Kagawa Y., Hirata H. Steady state kinetics of proton translocation catalyzed by thermophilic F0F1-ATPase reconstituted in planar bilayer membranes. J Biol Chem. 1989 Apr 15;264(11):6092–6096. [PubMed] [Google Scholar]
  11. O'Neal C. C., Boyer P. D. Assessment of the rate of bound substrate interconversion and of ATP acceleration of product release during catalysis by mitochondrial adenosine triphosphatase. J Biol Chem. 1984 May 10;259(9):5761–5767. [PubMed] [Google Scholar]
  12. Ohta S., Tsuboi M., Yoshida M., Kagawa Y. Intersubunit interactions in proton-translocating adenosine triphosphatase as revealed by hydrogen-exchange kinetics. Biochemistry. 1980 May 13;19(10):2160–2165. doi: 10.1021/bi00551a025. [DOI] [PubMed] [Google Scholar]
  13. Ohta S., Yohda M., Ishizuka M., Hirata H., Hamamoto T., Otawara-Hamamoto Y., Matsuda K., Kagawa Y. Sequence and over-expression of subunits of adenosine triphosphate synthase in thermophilic bacterium PS3. Biochim Biophys Acta. 1988 Mar 30;933(1):141–155. doi: 10.1016/0005-2728(88)90064-3. [DOI] [PubMed] [Google Scholar]
  14. Ohtsubo M., Yoshida M., Ohta S., Kagawa Y., Yohda M., Date T. In vitro mutated beta subunits from the F1-ATPase of the thermophilic bacterium, PS3, containing glutamine in place of glutamic acid in positions 190 or 201 assembles with the alpha and gamma subunits to produce inactive complexes. Biochem Biophys Res Commun. 1987 Jul 31;146(2):705–710. doi: 10.1016/0006-291x(87)90586-9. [DOI] [PubMed] [Google Scholar]
  15. Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi: 10.1152/physrev.1988.68.1.177. [DOI] [PubMed] [Google Scholar]
  16. Tiedge H., Lünsdorf H., Schäfer G., Schairer H. U. Subunit stoichiometry and juxtaposition of the photosynthetic coupling factor 1: Immunoelectron microscopy using monoclonal antibodies. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7874–7878. doi: 10.1073/pnas.82.23.7874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Verburg J. G., Yoshida M., Allison W. S. The use of dithionite reduction to identify the essential tyrosine residue in the F1-ATPase from the thermophilic bacterium, PS3, that reacts with 7-chloro-4-nitrobenzofurazan. Arch Biochem Biophys. 1986 Feb 15;245(1):8–13. doi: 10.1016/0003-9861(86)90184-0. [DOI] [PubMed] [Google Scholar]
  18. Wakabayashi T., Kubota M., Yoshida M., Kagawa Y. Structure of ATPase (coupling factor TF1) from a thermophilic bacterium. J Mol Biol. 1977 Dec 5;117(2):515–519. doi: 10.1016/0022-2836(77)90140-1. [DOI] [PubMed] [Google Scholar]
  19. Wong S. Y., Matsuno-Yagi A., Hatefi Y. Kinetics of ATP hydrolysis by F1-ATPase and the effects of anion activation, removal of tightly bound nucleotides, and partial inhibition of the ATPase by covalent modification. Biochemistry. 1984 Oct 9;23(21):5004–5009. doi: 10.1021/bi00316a027. [DOI] [PubMed] [Google Scholar]
  20. Yohda M., Ohta S., Hisabori T., Kagawa Y. Site-directed mutagenesis of stable adenosine triphosphate synthase. Biochim Biophys Acta. 1988 Mar 30;933(1):156–164. doi: 10.1016/0005-2728(88)90065-5. [DOI] [PubMed] [Google Scholar]
  21. Yohda M., Yoshida M. Single-site catalysis of F1-ATPase from thermophilic bacterium PS3 and its dominance in steady-state catalysis at low ATP concentration. J Biochem. 1987 Oct;102(4):875–883. doi: 10.1093/oxfordjournals.jbchem.a122128. [DOI] [PubMed] [Google Scholar]
  22. Yoshida M., Allison W. S. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3. J Biol Chem. 1986 May 5;261(13):5714–5721. [PubMed] [Google Scholar]
  23. Yoshida M., Sone N., Hirata H., Kagawa Y. Reconstitution of adenosine triphosphatase of thermophilic bacterium from purified individual subunits. J Biol Chem. 1977 May 25;252(10):3480–3485. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES