Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1229–o1230. doi: 10.1107/S1600536810015199

[3-(5-Nitro-2-fur­yl)-1-phenyl-1H-pyrazol-4-yl](phen­yl)methanone

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, Nithinchandra b, B Kalluraya b, N Satheesh Rai b
PMCID: PMC2979013  PMID: 21579253

Abstract

In the title pyrazole compound, C20H13N3O4, an intra­molecular C—H⋯O hydrogen bond generates a seven-membered ring, producing an S(7) ring motif. The essentially planar furan and pyrazole rings [maximum deviations of 0.002 (1) and 0.007 (1) Å, respectively] are coplanar with each other, forming a dihedral angle of 3.06 (10)°. The pyrazole ring forms dihedral angles of 8.51 (9) and 56.81 (9)° with the two benzene rings. The nitro group is coplanar with the attached furan ring, as indicated by the dihedral angle of 2.5 (3)°. In the crystal packing, inter­molecular C—H⋯O hydrogen bonds link adjacent mol­ecules into two-mol­ecule-wide chains along the a axis. The crystal packing is further stabilized by weak inter­molecular C—H⋯π and π–π inter­actions [centroid–centroid distance = 3.4441 (10) Å].

Related literature

For general background to and applications of the title compound, see: Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2009a,b ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1229-scheme1.jpg

Experimental

Crystal data

  • C20H13N3O4

  • M r = 359.33

  • Monoclinic, Inline graphic

  • a = 11.2946 (12) Å

  • b = 6.9755 (8) Å

  • c = 22.7064 (18) Å

  • β = 115.015 (4)°

  • V = 1621.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.24 × 0.15 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.976, T max = 0.992

  • 17931 measured reflections

  • 4725 independent reflections

  • 2991 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.129

  • S = 1.02

  • 4725 reflections

  • 296 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015199/tk2653sup1.cif

e-66-o1229-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015199/tk2653Isup2.hkl

e-66-o1229-Isup2.hkl (231.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C15–C20 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.98 (2) 2.45 (2) 3.190 (3) 131.8 (17)
C11—H11A⋯O2 0.98 (3) 2.23 (3) 2.950 (3) 130 (2)
C14—H14A⋯O3ii 0.96 (2) 2.43 (2) 3.379 (3) 169.3 (17)
C18—H18ACg1iii 0.96 (2) 2.96 (2) 3.671 (2) 132.0 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their synthesis (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications, and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl- substituted pyrazoles have sharply pronounced sedative action on the central nervous system. Certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal, fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003). In continuation of our studies on 1,3-dipolar cyclo-addition reactions of sydnones with dipolarophiles carrying a nitrofuran or a nitrothiophene moiety (Kalluraya et al., 1994), we herein report the crystal structure of the title pyrazole compound.

In the title compound, Fig. 1, an intramolecular C11—H11A···O2 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of 0.002 (1) and -0.007 (1) Å, respectively, at atoms C12 and N2. These two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.06 (10)°. The pyrazole ring is inclined at dihedral angles of 56.81 (9) and 8.51 (9)°, respectively, with the C1-C6 and C15-C20 benzene rings. The nitro group is coplanar with the attached furan ring, making a dihedral angle of 2.5 (3)°. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009a,b).

In the crystal packing, intermolecular C2—H2A···O4 and C14—H14A···O3 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-wide chains along the a axis (Fig. 2). The crystal packing is further stabilized by weak intermolecular C18—H18A···Cg1 (Table 1) and Cg2···Cg2 interactions [Cg2···Cg2i = 3.4441 (10) Å where Cg1 and Cg2 are the centroids of the C15-C20 benzene and pyrazole rings, respectively].

Experimental

3-Phenylsydnone (0.01 mol) and 1-phenyl-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from a mixture of ethanol and DMF. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of ethanol and DMF by slow evaporation.

Refinement

All the H atoms were located from difference Fourier map [range of C—H = 0.933 (18)–1.00 (3) Å] and allowed to refine freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis, showing two-molecule-wide chains along the a axis. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C20H13N3O4 F(000) = 744
Mr = 359.33 Dx = 1.472 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2349 reflections
a = 11.2946 (12) Å θ = 3.5–26.3°
b = 6.9755 (8) Å µ = 0.11 mm1
c = 22.7064 (18) Å T = 100 K
β = 115.015 (4)° Block, brown
V = 1621.1 (3) Å3 0.24 × 0.15 × 0.07 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 4725 independent reflections
Radiation source: fine-focus sealed tube 2991 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −15→15
Tmin = 0.976, Tmax = 0.992 k = −9→9
17931 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.6127P] where P = (Fo2 + 2Fc2)/3
4725 reflections (Δ/σ)max = 0.001
296 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.26743 (11) 0.74226 (19) 1.00753 (6) 0.0293 (3)
O2 0.86733 (12) 0.95863 (19) 0.85528 (6) 0.0297 (3)
O3 1.55123 (13) 0.7939 (2) 0.98584 (7) 0.0411 (4)
O4 1.52027 (15) 0.6888 (3) 1.06817 (9) 0.0764 (7)
N1 0.96246 (13) 0.6915 (2) 1.05307 (6) 0.0206 (3)
N2 1.07625 (13) 0.6992 (2) 1.04603 (7) 0.0215 (3)
N3 1.48065 (16) 0.7520 (3) 1.01308 (9) 0.0382 (4)
C1 0.62475 (17) 0.6603 (3) 0.86532 (8) 0.0286 (4)
C2 0.49042 (19) 0.6327 (4) 0.83427 (9) 0.0359 (5)
C3 0.40950 (19) 0.7816 (4) 0.80076 (9) 0.0410 (5)
C4 0.4611 (2) 0.9603 (4) 0.79806 (10) 0.0434 (6)
C5 0.5954 (2) 0.9876 (3) 0.82757 (10) 0.0362 (5)
C6 0.67801 (17) 0.8374 (3) 0.86116 (8) 0.0271 (4)
C7 0.82209 (16) 0.8692 (3) 0.88763 (8) 0.0238 (4)
C8 0.90414 (16) 0.7934 (2) 0.95280 (8) 0.0213 (3)
C9 1.04207 (16) 0.7631 (2) 0.98559 (8) 0.0208 (3)
C10 1.14371 (16) 0.7910 (2) 0.96325 (8) 0.0226 (4)
C11 1.14713 (18) 0.8593 (3) 0.90780 (9) 0.0278 (4)
C12 1.27856 (18) 0.8549 (3) 0.91693 (9) 0.0294 (4)
C13 1.34517 (17) 0.7833 (3) 0.97709 (9) 0.0282 (4)
C14 0.85851 (16) 0.7448 (2) 0.99826 (8) 0.0216 (3)
C15 0.96295 (16) 0.6275 (2) 1.11294 (8) 0.0209 (3)
C16 1.07647 (16) 0.5522 (3) 1.16079 (8) 0.0233 (4)
C17 1.07388 (18) 0.4800 (3) 1.21724 (9) 0.0281 (4)
C18 0.96039 (18) 0.4857 (3) 1.22655 (9) 0.0282 (4)
C19 0.84901 (18) 0.5655 (3) 1.17896 (9) 0.0273 (4)
C20 0.84850 (17) 0.6368 (3) 1.12181 (8) 0.0238 (4)
H1A 0.6830 (18) 0.558 (3) 0.8899 (9) 0.024 (5)*
H2A 0.458 (2) 0.505 (3) 0.8376 (11) 0.047 (7)*
H3A 0.315 (2) 0.757 (3) 0.7776 (11) 0.047 (6)*
H4A 0.406 (2) 1.071 (4) 0.7748 (12) 0.057 (7)*
H5A 0.635 (2) 1.110 (4) 0.8263 (11) 0.048 (7)*
H11A 1.071 (2) 0.900 (4) 0.8687 (12) 0.061 (7)*
H12A 1.319 (2) 0.895 (3) 0.8890 (10) 0.041 (6)*
H14A 0.7722 (19) 0.741 (3) 0.9963 (9) 0.028 (5)*
H16A 1.1530 (18) 0.549 (3) 1.1519 (9) 0.025 (5)*
H17A 1.150 (2) 0.425 (3) 1.2493 (10) 0.039 (6)*
H18A 0.9566 (19) 0.433 (3) 1.2648 (10) 0.034 (5)*
H19A 0.7709 (17) 0.575 (3) 1.1840 (8) 0.022 (5)*
H20A 0.7707 (18) 0.686 (3) 1.0903 (9) 0.022 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0199 (6) 0.0361 (7) 0.0344 (7) 0.0003 (5) 0.0140 (5) 0.0054 (6)
O2 0.0304 (7) 0.0320 (7) 0.0293 (6) −0.0019 (6) 0.0152 (5) 0.0027 (6)
O3 0.0260 (7) 0.0555 (10) 0.0492 (8) −0.0051 (7) 0.0230 (6) −0.0074 (7)
O4 0.0283 (8) 0.1271 (18) 0.0727 (12) 0.0171 (10) 0.0201 (8) 0.0604 (13)
N1 0.0185 (7) 0.0227 (7) 0.0226 (7) −0.0021 (6) 0.0106 (5) −0.0021 (6)
N2 0.0184 (6) 0.0232 (7) 0.0252 (7) −0.0015 (6) 0.0115 (5) −0.0030 (6)
N3 0.0244 (8) 0.0450 (11) 0.0475 (10) 0.0010 (7) 0.0176 (7) 0.0061 (9)
C1 0.0235 (9) 0.0393 (11) 0.0230 (8) 0.0008 (8) 0.0098 (7) 0.0008 (8)
C2 0.0274 (10) 0.0548 (14) 0.0264 (9) −0.0065 (10) 0.0125 (8) −0.0022 (10)
C3 0.0222 (9) 0.0738 (17) 0.0254 (9) 0.0009 (10) 0.0086 (8) 0.0023 (10)
C4 0.0268 (10) 0.0670 (16) 0.0350 (10) 0.0134 (11) 0.0116 (8) 0.0175 (11)
C5 0.0324 (10) 0.0443 (13) 0.0337 (10) 0.0069 (10) 0.0157 (8) 0.0113 (9)
C6 0.0240 (8) 0.0385 (11) 0.0205 (8) 0.0027 (8) 0.0110 (7) 0.0013 (8)
C7 0.0255 (8) 0.0242 (9) 0.0232 (8) 0.0008 (7) 0.0117 (7) −0.0024 (7)
C8 0.0214 (8) 0.0199 (8) 0.0242 (8) −0.0021 (7) 0.0112 (6) −0.0029 (7)
C9 0.0216 (8) 0.0172 (8) 0.0246 (8) −0.0027 (7) 0.0108 (6) −0.0050 (7)
C10 0.0189 (8) 0.0216 (8) 0.0271 (8) −0.0021 (7) 0.0095 (7) −0.0040 (7)
C11 0.0258 (9) 0.0337 (10) 0.0276 (9) −0.0023 (8) 0.0148 (7) −0.0026 (8)
C12 0.0276 (9) 0.0352 (11) 0.0303 (9) −0.0065 (8) 0.0171 (7) −0.0070 (8)
C13 0.0193 (8) 0.0301 (10) 0.0387 (10) −0.0020 (7) 0.0157 (7) −0.0026 (8)
C14 0.0197 (8) 0.0214 (8) 0.0239 (8) 0.0003 (7) 0.0095 (6) −0.0030 (7)
C15 0.0225 (8) 0.0196 (8) 0.0221 (7) −0.0030 (7) 0.0108 (6) −0.0027 (7)
C16 0.0207 (8) 0.0245 (9) 0.0257 (8) −0.0017 (7) 0.0106 (7) −0.0032 (7)
C17 0.0270 (9) 0.0287 (10) 0.0251 (8) −0.0012 (8) 0.0077 (7) 0.0007 (8)
C18 0.0327 (10) 0.0291 (10) 0.0240 (8) −0.0073 (8) 0.0131 (7) −0.0024 (8)
C19 0.0254 (9) 0.0305 (10) 0.0315 (9) −0.0041 (8) 0.0173 (7) −0.0042 (8)
C20 0.0204 (8) 0.0248 (9) 0.0262 (8) −0.0013 (7) 0.0099 (7) −0.0020 (7)

Geometric parameters (Å, °)

O1—C13 1.358 (2) C7—C8 1.472 (2)
O1—C10 1.375 (2) C8—C14 1.377 (2)
O2—C7 1.228 (2) C8—C9 1.430 (2)
O3—N3 1.233 (2) C9—C10 1.451 (2)
O4—N3 1.219 (2) C10—C11 1.362 (2)
N1—C14 1.353 (2) C11—C12 1.410 (3)
N1—N2 1.3616 (18) C11—H11A 0.98 (2)
N1—C15 1.429 (2) C12—C13 1.346 (3)
N2—C9 1.335 (2) C12—H12A 0.96 (2)
N3—C13 1.414 (2) C14—H14A 0.96 (2)
C1—C2 1.390 (3) C15—C16 1.387 (2)
C1—C6 1.395 (3) C15—C20 1.391 (2)
C1—H1A 0.97 (2) C16—C17 1.389 (2)
C2—C3 1.380 (3) C16—H16A 0.968 (18)
C2—H2A 0.98 (2) C17—C18 1.385 (3)
C3—C4 1.388 (3) C17—H17A 0.94 (2)
C3—H3A 0.99 (2) C18—C19 1.382 (3)
C4—C5 1.389 (3) C18—H18A 0.96 (2)
C4—H4A 1.00 (3) C19—C20 1.387 (2)
C5—C6 1.396 (3) C19—H19A 0.939 (18)
C5—H5A 0.97 (2) C20—H20A 0.933 (18)
C6—C7 1.494 (2)
C13—O1—C10 104.57 (13) C8—C9—C10 130.30 (15)
C14—N1—N2 112.10 (13) C11—C10—O1 110.18 (14)
C14—N1—C15 127.88 (14) C11—C10—C9 134.91 (16)
N2—N1—C15 120.00 (13) O1—C10—C9 114.89 (14)
C9—N2—N1 104.88 (13) C10—C11—C12 107.23 (16)
O4—N3—O3 124.47 (17) C10—C11—H11A 125.5 (14)
O4—N3—C13 119.14 (17) C12—C11—H11A 127.2 (14)
O3—N3—C13 116.38 (17) C13—C12—C11 105.03 (16)
C2—C1—C6 119.85 (19) C13—C12—H12A 124.0 (13)
C2—C1—H1A 121.2 (11) C11—C12—H12A 131.0 (13)
C6—C1—H1A 118.9 (11) C12—C13—O1 112.99 (15)
C3—C2—C1 120.1 (2) C12—C13—N3 130.37 (17)
C3—C2—H2A 123.0 (14) O1—C13—N3 116.60 (16)
C1—C2—H2A 116.9 (13) N1—C14—C8 107.64 (15)
C2—C3—C4 120.51 (19) N1—C14—H14A 120.4 (11)
C2—C3—H3A 118.6 (14) C8—C14—H14A 132.0 (11)
C4—C3—H3A 120.8 (14) C16—C15—C20 120.80 (16)
C3—C4—C5 119.7 (2) C16—C15—N1 119.63 (14)
C3—C4—H4A 122.8 (14) C20—C15—N1 119.55 (15)
C5—C4—H4A 117.5 (14) C15—C16—C17 119.16 (16)
C4—C5—C6 120.2 (2) C15—C16—H16A 117.3 (11)
C4—C5—H5A 122.1 (13) C17—C16—H16A 123.6 (11)
C6—C5—H5A 117.7 (14) C18—C17—C16 120.84 (17)
C1—C6—C5 119.62 (17) C18—C17—H17A 119.5 (13)
C1—C6—C7 122.14 (17) C16—C17—H17A 119.6 (13)
C5—C6—C7 118.10 (18) C19—C18—C17 119.16 (17)
O2—C7—C8 122.64 (16) C19—C18—H18A 119.1 (12)
O2—C7—C6 119.53 (15) C17—C18—H18A 121.7 (12)
C8—C7—C6 117.83 (15) C18—C19—C20 121.20 (17)
C14—C8—C9 104.11 (14) C18—C19—H19A 121.7 (11)
C14—C8—C7 124.45 (15) C20—C19—H19A 117.1 (11)
C9—C8—C7 131.35 (15) C19—C20—C15 118.82 (16)
N2—C9—C8 111.25 (14) C19—C20—H20A 118.7 (11)
N2—C9—C10 118.45 (15) C15—C20—H20A 122.5 (11)
C14—N1—N2—C9 1.32 (18) C8—C9—C10—O1 −178.34 (16)
C15—N1—N2—C9 179.83 (15) O1—C10—C11—C12 −0.2 (2)
C6—C1—C2—C3 −1.6 (3) C9—C10—C11—C12 178.25 (19)
C1—C2—C3—C4 −0.4 (3) C10—C11—C12—C13 0.3 (2)
C2—C3—C4—C5 2.1 (3) C11—C12—C13—O1 −0.3 (2)
C3—C4—C5—C6 −1.6 (3) C11—C12—C13—N3 −177.8 (2)
C2—C1—C6—C5 2.1 (3) C10—O1—C13—C12 0.2 (2)
C2—C1—C6—C7 −173.56 (16) C10—O1—C13—N3 178.07 (16)
C4—C5—C6—C1 −0.5 (3) O4—N3—C13—C12 178.3 (2)
C4—C5—C6—C7 175.34 (18) O3—N3—C13—C12 −0.8 (3)
C1—C6—C7—O2 135.87 (18) O4—N3—C13—O1 0.9 (3)
C5—C6—C7—O2 −39.8 (2) O3—N3—C13—O1 −178.27 (17)
C1—C6—C7—C8 −45.1 (2) N2—N1—C14—C8 −1.0 (2)
C5—C6—C7—C8 139.15 (17) C15—N1—C14—C8 −179.35 (16)
O2—C7—C8—C14 159.65 (17) C9—C8—C14—N1 0.24 (19)
C6—C7—C8—C14 −19.3 (3) C7—C8—C14—N1 −176.58 (16)
O2—C7—C8—C9 −16.2 (3) C14—N1—C15—C16 170.60 (17)
C6—C7—C8—C9 164.80 (17) N2—N1—C15—C16 −7.6 (2)
N1—N2—C9—C8 −1.14 (18) C14—N1—C15—C20 −7.7 (3)
N1—N2—C9—C10 178.84 (14) N2—N1—C15—C20 174.08 (15)
C14—C8—C9—N2 0.58 (19) C20—C15—C16—C17 2.0 (3)
C7—C8—C9—N2 177.09 (17) N1—C15—C16—C17 −176.24 (16)
C14—C8—C9—C10 −179.40 (17) C15—C16—C17—C18 −1.1 (3)
C7—C8—C9—C10 −2.9 (3) C16—C17—C18—C19 −0.4 (3)
C13—O1—C10—C11 0.0 (2) C17—C18—C19—C20 1.1 (3)
C13—O1—C10—C9 −178.77 (15) C18—C19—C20—C15 −0.2 (3)
N2—C9—C10—C11 −176.7 (2) C16—C15—C20—C19 −1.3 (3)
C8—C9—C10—C11 3.2 (3) N1—C15—C20—C19 176.91 (16)
N2—C9—C10—O1 1.7 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 benzene ring.
D—H···A D—H H···A D···A D—H···A
C2—H2A···O4i 0.98 (2) 2.45 (2) 3.190 (3) 131.8 (17)
C11—H11A···O2 0.98 (3) 2.23 (3) 2.950 (3) 130 (2)
C14—H14A···O3ii 0.96 (2) 2.43 (2) 3.379 (3) 169.3 (17)
C18—H18A···Cg1iii 0.96 (2) 2.96 (2) 3.671 (2) 132.0 (16)

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2653).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009a). Acta Cryst. E65, o3088–o3089. [DOI] [PMC free article] [PubMed]
  5. Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009b). Acta Cryst. E65, o3099–o3100. [DOI] [PMC free article] [PubMed]
  6. Kalluraya, B., D’Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.
  7. Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.
  8. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem.43, 1715–1720. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Sridhar, R. & Perumal, P. T. (2003). Synth. Commun.33, 1483–1488.Inline graphic

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015199/tk2653sup1.cif

e-66-o1229-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015199/tk2653Isup2.hkl

e-66-o1229-Isup2.hkl (231.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES