Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1111–o1112. doi: 10.1107/S1600536810013644

2-(4-Methoxy­phen­yl)-6-trifluoro­methyl-1H-pyrrolo[3,2-c]quinoline monohydrate

Grzegorz Dutkiewicz a, Anil N Mayekar b, H S Yathirajan b, B Narayana c, Maciej Kubicki a,*
PMCID: PMC2979020  PMID: 21579163

Abstract

In the title compound, C19H13F3N2O·H2O, the phenyl and pyrroloquinoline ring system are close to coplanar [dihedral angle = 10.94 (4)°]. The meth­oxy group also is almost coplanar with the phenyl ring [5.4 (1)°]. In the crystal structure N—H⋯O(water) and water–quinoline O—H⋯N hydrogen bonds build up a supra­molecular chain-like arrangement along [001]. The remaining H atom of the water mol­ecule does not take part in classical hydrogen bonds. Instead, this O—H bond points toward the center of the phenyl ring of a neighbouring mol­ecule. Weak C—H⋯O and C—H⋯π inter­actions are also present.

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002). For O—H⋯π bonds, see: Atwood et al. (1991). For the graph-set description of hydrogen-bond systems, see: Bernstein et al. (1995). For the influence of substituents on the geometry of aromatic rings, see: Domenicano (1988). For a similar synthesis, see: Dutkiewicz et al. (2010). For related structures, see: Fan & Chen (1987); Lynch et al. (2001); Lynch & McClenaghan (2002). graphic file with name e-66-o1111-scheme1.jpg

Experimental

Crystal data

  • C19H13F3N2O·H2O

  • M r = 360.33

  • Monoclinic, Inline graphic

  • a = 13.838 (1) Å

  • b = 7.0432 (5) Å

  • c = 17.758 (2) Å

  • β = 102.743 (8)°

  • V = 1688.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.99 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.1 mm

Data collection

  • Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.340, T max = 1.000

  • 5601 measured reflections

  • 3304 independent reflections

  • 2767 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.128

  • S = 1.07

  • 3304 reflections

  • 296 parameters

  • All H-atom parameters refined

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013644/im2190sup1.cif

e-66-o1111-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013644/im2190Isup2.hkl

e-66-o1111-Isup2.hkl (158.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

CgA, CgB, CgD are the centroids of the C5–C9,C1C, N1,C2–C5,C1C and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1W 0.987 (19) 2.42 (2) 3.340 (2) 155 (2)
N11—H11⋯O1W 0.92 (2) 1.94 (2) 2.845 (2) 167 (2)
C19—H19⋯O1W 0.977 (19) 2.49 (2) 3.439 (2) 164 (1)
C8—H8⋯O20i 1.02 (2) 2.45 (2) 3.427 (2) 160 (2)
O1W—H1W1⋯N1ii 0.91 (2) 1.93 (2) 2.807 (2) 161 (2)
C21—H21C⋯CgAiii 0.94 (2) 2.83 (2) 3.550 (2) 135 (2)
C21—H21B⋯CgBiv 0.97 (2) 2.72 (2) 3.503 (2) 138 (2)
O1W—H1W2⋯CgDiii 0.82 (3) 2.62 (3) 3.310 (2) 143 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

ANM thanks the University of Mysore for the research facilities.

supplementary crystallographic information

Comment

There is only one crystal structure of a compound having a pyrrolo[3,2-c]quinoline skeleton in the Cambridge Crystallographic Database (Allen, 2002; Version 5.31 of November 2009, last update Feb. 2010): 1-phenyl-2,3,4-tris(trifluoromethyl)pyrrolo[2,3-c]quinoline (Fan & Chen, 1987). The only other similar structurally characterized compounds are derivatives of 1H-pyrrolo[2,3-h]quinoline, namely 2-(4-pyridyl)-pyrrolo[3,2-h]quinoline (Lynch et al., 2001) and 2-phenylpyrrolo[2,3-h]quinoline dihydrate (Lynch & McClenaghan, 2002). Here we present the results of the crystal structure determination of 2-(4-methoxyphenyl)-6-(trifluoromethyl)-1H-pyrrolo[3,2-c]quinoline hydrate(1 . H2O, Scheme 1).

Two planar systems in (1), pyrroloquinoline (planar within 0.0171 (4) Å) and the phenyl ring (0.0050 (11) Å) make a dihedral angle of 10.94 (4)°. Therefore, the complete molecule (without F atoms) is approximately planar. The methoxy group also is not twisted significantly (5.4 (1)°) with respect to the phenyl ring plane. Bond angles within the phenyl ring are influenced by the presence of substituents. As expected for p-disubstitution, the influences are almost additive. The sum of values given by Domenicano (1988) or found in the CSD for mono-substituted phenyl rings are very close to the actual values in (1).

The primary motif of the crystal packing is a chain of alternate water and 1 molecules (Fig. 2, Table 1). In that chain (C22(8) using graph set notation: Bernstein et al., 1995) both components act as hydrogen bond donor and acceptor. N11—H11 group of 1 donates hydrogen for the N—H···O1W (water) hydrogen bond, and the water molecule acts as a donor for the OH···N1(quinoline) hydrogen bond. Due to the steric requirement, the O1W oxygen atom is also in close contact with the adjacent H6 and H19 hydrogen atoms. Because of the geometric parameters of these interactions (Table 1), they might be regarded as the secondary, weak hydrogen bonds. The remaining hydrogen atom of the water molecule does not take part in "classical" hydrogen bonds; instead this O—H bond points toward the phenyl ring of the neighbouring molecule, probably making the O—H(water)···π weak hydrogen bond. Such hydrogen bonds were described by Atwood et al. (1991), and they are supposed to play a role in the biological systems. There are some 300 cases of such short contacts in the CSD. In 1, O—H···π hydrogen bonds together with another weak interactions of C—H···O, C—H···π and π···π type, connect the neighbouring chains (Table 1, Fig. 3).

Experimental

1-(4-methoxyphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone (1.8 g, 5 mmoles), prepared according to the previously described method (Dutkiewicz et al., 2010) was added to 5 ml of diphenyl ether and the mixture was heated at 523 K in an oil bath for 6 hrs. After cooling, ether was added until the solution became cloudy. Further cooling resulted in precipitation of the product (I), which was collected by filtration. Recrystallization was performed at room temperature from ethanol, m.p.: 401-403 K. Analysis found: C 66.56, H 3.79, N 8.23%; C19H13F3N2O, requires: C 66.66, H 3.83, N 8.18%

Refinement

Hydrogen atoms were located in the difference Fourier maps and isotropically refined.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of the compound 1 . H2O showing the atom labelling scheme. Ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. Hydrogen bonds and weaker C—H···O contacts (cf. Comment Section) are shown as dashed lines.

Fig. 2.

Fig. 2.

Hydrogen bonded chain along [001]; N—H···O, O—H···N, and C—H···O hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The crystal packing; hydrogen bonds and O—H···π and C—H···π contacts are shown as dashed lines.

Crystal data

C19H13F3N2O·H2O F(000) = 744
Mr = 360.33 Dx = 1.418 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 3587 reflections
a = 13.838 (1) Å θ = 3.3–75.2°
b = 7.0432 (5) Å µ = 0.99 mm1
c = 17.758 (2) Å T = 295 K
β = 102.743 (8)° Plate, colourless
V = 1688.2 (2) Å3 0.4 × 0.2 × 0.1 mm
Z = 4

Data collection

Oxford Diffraction SuperNova (single source at offset) Atlas diffractometer 3304 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2767 reflections with I > 2σ(I)
mirror Rint = 0.013
Detector resolution: 5.2679 pixels mm-1 θmax = 75.3°, θmin = 3.3°
ω scans h = −17→15
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −8→5
Tmin = 0.340, Tmax = 1.000 l = −22→19
5601 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 All H-atom parameters refined
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.1838P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.009
3304 reflections Δρmax = 0.19 e Å3
296 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0039 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.78945 (9) 0.29250 (19) 0.16925 (7) 0.0550 (3)
C2 0.88353 (11) 0.3157 (3) 0.20243 (8) 0.0585 (4)
H2 0.9306 (14) 0.344 (3) 0.1687 (10) 0.071 (5)*
C3 0.92113 (10) 0.3055 (2) 0.28263 (8) 0.0510 (3)
C4 0.85387 (10) 0.26693 (18) 0.32912 (7) 0.0439 (3)
C5 0.75150 (10) 0.24194 (18) 0.29686 (8) 0.0457 (3)
C6 0.67970 (11) 0.2042 (2) 0.34033 (9) 0.0564 (4)
H6 0.6994 (13) 0.196 (3) 0.3971 (11) 0.069 (5)*
C7 0.58263 (12) 0.1830 (3) 0.30423 (10) 0.0684 (5)
H7 0.5303 (15) 0.158 (3) 0.3354 (11) 0.080 (6)*
C8 0.55295 (12) 0.1992 (3) 0.22380 (10) 0.0668 (4)
H8 0.4799 (16) 0.183 (3) 0.1986 (11) 0.080 (6)*
C9 0.62098 (11) 0.2358 (2) 0.18026 (9) 0.0564 (4)
C91 0.58623 (13) 0.2559 (3) 0.09412 (11) 0.0790 (6)
F91A 0.48893 (9) 0.2321 (3) 0.07127 (7) 0.1234 (6)
F91B 0.62834 (10) 0.1319 (2) 0.05506 (7) 0.1118 (5)
F91C 0.60642 (9) 0.4282 (2) 0.06897 (7) 0.1051 (5)
C10 0.72299 (10) 0.25735 (19) 0.21521 (8) 0.0474 (3)
N11 0.90552 (8) 0.26236 (16) 0.40374 (6) 0.0451 (3)
H11 0.8790 (14) 0.233 (2) 0.4455 (11) 0.065 (5)*
C12 1.00454 (10) 0.2982 (2) 0.40618 (8) 0.0472 (3)
C13 1.01616 (10) 0.3251 (2) 0.33251 (8) 0.0560 (4)
H13 1.0773 (14) 0.354 (3) 0.3175 (10) 0.073 (5)*
C14 1.07851 (10) 0.30124 (19) 0.47970 (8) 0.0469 (3)
C15 1.17510 (10) 0.3653 (2) 0.48185 (9) 0.0557 (4)
H15 1.1925 (12) 0.408 (3) 0.4342 (10) 0.067 (5)*
C16 1.24628 (11) 0.3636 (2) 0.54972 (9) 0.0590 (4)
H16 1.3115 (14) 0.409 (3) 0.5519 (10) 0.072 (5)*
C17 1.22347 (10) 0.3006 (2) 0.61766 (8) 0.0528 (3)
C18 1.12861 (11) 0.2388 (2) 0.61730 (9) 0.0547 (4)
H18 1.1117 (13) 0.195 (2) 0.6656 (11) 0.064 (5)*
C19 1.05731 (10) 0.2390 (2) 0.54829 (8) 0.0525 (3)
H19 0.9913 (14) 0.193 (2) 0.5499 (10) 0.064 (5)*
O20 1.29904 (8) 0.30707 (18) 0.68177 (6) 0.0660 (3)
C21 1.27720 (15) 0.2604 (3) 0.75398 (10) 0.0669 (5)
H21A 1.3371 (18) 0.280 (3) 0.7903 (13) 0.090 (7)*
H21B 1.2269 (17) 0.345 (3) 0.7653 (12) 0.089 (6)*
H21C 1.2575 (14) 0.133 (3) 0.7546 (11) 0.078 (6)*
O1W 0.81044 (9) 0.12279 (19) 0.51922 (6) 0.0610 (3)
H1W1 0.7916 (17) 0.165 (3) 0.5623 (13) 0.092 (7)*
H1W2 0.802 (2) 0.008 (4) 0.5170 (15) 0.121 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0483 (6) 0.0776 (8) 0.0393 (6) 0.0045 (6) 0.0100 (5) −0.0023 (5)
C2 0.0472 (7) 0.0893 (11) 0.0408 (7) 0.0035 (7) 0.0132 (6) 0.0002 (7)
C3 0.0445 (7) 0.0674 (8) 0.0416 (7) 0.0037 (6) 0.0105 (5) −0.0016 (6)
C4 0.0430 (7) 0.0504 (7) 0.0378 (6) 0.0029 (5) 0.0077 (5) −0.0014 (5)
C5 0.0448 (7) 0.0500 (7) 0.0414 (7) 0.0012 (5) 0.0076 (5) −0.0008 (5)
C6 0.0491 (8) 0.0735 (9) 0.0463 (7) −0.0054 (7) 0.0100 (6) 0.0035 (7)
C7 0.0489 (8) 0.0975 (12) 0.0597 (9) −0.0095 (8) 0.0143 (7) 0.0046 (9)
C8 0.0443 (8) 0.0930 (12) 0.0600 (9) −0.0049 (8) 0.0046 (7) −0.0004 (8)
C9 0.0463 (8) 0.0711 (9) 0.0487 (8) 0.0016 (6) 0.0043 (6) −0.0033 (6)
C91 0.0496 (9) 0.1272 (17) 0.0557 (10) −0.0007 (10) 0.0016 (7) −0.0078 (10)
F91A 0.0517 (6) 0.2442 (19) 0.0643 (7) −0.0149 (8) −0.0089 (5) 0.0008 (8)
F91B 0.0891 (8) 0.1757 (14) 0.0664 (6) −0.0034 (8) 0.0080 (6) −0.0496 (8)
F91C 0.0881 (8) 0.1500 (12) 0.0710 (7) 0.0129 (8) 0.0040 (6) 0.0398 (8)
C10 0.0460 (7) 0.0539 (7) 0.0415 (7) 0.0029 (5) 0.0080 (6) −0.0027 (5)
N11 0.0421 (6) 0.0557 (6) 0.0369 (5) 0.0007 (4) 0.0074 (4) 0.0000 (4)
C12 0.0403 (6) 0.0557 (7) 0.0446 (7) 0.0039 (5) 0.0068 (5) −0.0019 (5)
C13 0.0410 (7) 0.0829 (10) 0.0446 (7) 0.0022 (7) 0.0108 (6) 0.0002 (7)
C14 0.0412 (7) 0.0537 (7) 0.0444 (7) 0.0042 (5) 0.0061 (5) −0.0023 (5)
C15 0.0445 (7) 0.0705 (9) 0.0514 (8) −0.0003 (6) 0.0090 (6) 0.0010 (7)
C16 0.0412 (7) 0.0743 (10) 0.0596 (8) −0.0019 (7) 0.0069 (6) −0.0005 (7)
C17 0.0430 (7) 0.0580 (8) 0.0515 (7) 0.0063 (6) −0.0022 (6) −0.0032 (6)
C18 0.0495 (8) 0.0667 (9) 0.0457 (8) 0.0007 (6) 0.0054 (6) 0.0027 (6)
C19 0.0415 (7) 0.0682 (9) 0.0459 (7) −0.0012 (6) 0.0057 (6) −0.0004 (6)
O20 0.0488 (6) 0.0855 (8) 0.0553 (6) 0.0016 (5) −0.0065 (5) −0.0003 (5)
C21 0.0688 (11) 0.0694 (11) 0.0532 (9) 0.0023 (8) −0.0063 (8) −0.0012 (8)
O1W 0.0696 (7) 0.0718 (8) 0.0449 (5) −0.0025 (6) 0.0199 (5) 0.0002 (5)

Geometric parameters (Å, °)

N1—C2 1.3155 (19) N11—H11 0.92 (2)
N1—C10 1.3800 (18) C12—C13 1.3662 (19)
C2—C3 1.4061 (19) C12—C14 1.4707 (18)
C2—H2 1.00 (2) C13—H13 0.96 (2)
C3—C4 1.4004 (19) C14—C19 1.385 (2)
C3—C13 1.4210 (19) C14—C15 1.403 (2)
C4—N11 1.3601 (17) C15—C16 1.378 (2)
C4—C5 1.4170 (19) C15—H15 0.977 (18)
C5—C6 1.411 (2) C16—C17 1.386 (2)
C5—C10 1.4202 (19) C16—H16 0.950 (19)
C6—C7 1.363 (2) C17—O20 1.3663 (16)
C6—H6 0.987 (19) C17—C18 1.382 (2)
C7—C8 1.401 (2) C18—C19 1.394 (2)
C7—H7 1.02 (2) C18—H18 0.988 (19)
C8—C9 1.368 (2) C19—H19 0.977 (19)
C8—H8 1.02 (2) O20—C21 1.419 (2)
C9—C10 1.419 (2) C21—H21A 0.94 (2)
C9—C91 1.506 (2) C21—H21B 0.97 (2)
C91—F91B 1.327 (2) C21—H21C 0.94 (2)
C91—F91A 1.328 (2) O1W—H1W1 0.91 (2)
C91—F91C 1.344 (3) O1W—H1W2 0.82 (3)
N11—C12 1.3845 (17)
C2—N1—C10 118.69 (12) C4—N11—H11 124.9 (11)
N1—C2—C3 123.77 (13) C12—N11—H11 125.7 (11)
N1—C2—H2 117.9 (10) C13—C12—N11 108.67 (12)
C3—C2—H2 118.3 (10) C13—C12—C14 129.95 (13)
C4—C3—C2 117.49 (13) N11—C12—C14 121.38 (12)
C4—C3—C13 107.18 (12) C12—C13—C3 107.17 (12)
C2—C3—C13 135.34 (14) C12—C13—H13 126.2 (11)
N11—C4—C3 107.71 (12) C3—C13—H13 126.6 (11)
N11—C4—C5 130.89 (12) C19—C14—C15 117.58 (13)
C3—C4—C5 121.39 (12) C19—C14—C12 122.34 (12)
C6—C5—C4 124.31 (13) C15—C14—C12 120.07 (13)
C6—C5—C10 120.15 (13) C16—C15—C14 120.92 (14)
C4—C5—C10 115.54 (12) C16—C15—H15 119.7 (10)
C7—C6—C5 120.19 (14) C14—C15—H15 119.4 (10)
C7—C6—H6 119.7 (11) C15—C16—C17 120.54 (14)
C5—C6—H6 120.1 (11) C15—C16—H16 121.5 (11)
C6—C7—C8 120.51 (15) C17—C16—H16 117.9 (11)
C6—C7—H7 120.5 (11) O20—C17—C18 124.48 (14)
C8—C7—H7 119.0 (11) O20—C17—C16 115.81 (13)
C9—C8—C7 120.52 (15) C18—C17—C16 119.70 (13)
C9—C8—H8 120.9 (12) C17—C18—C19 119.43 (14)
C7—C8—H8 118.6 (12) C17—C18—H18 120.1 (11)
C8—C9—C10 121.00 (14) C19—C18—H18 120.5 (11)
C8—C9—C91 119.11 (14) C14—C19—C18 121.83 (14)
C10—C9—C91 119.88 (14) C14—C19—H19 120.8 (10)
F91B—C91—F91A 106.84 (17) C18—C19—H19 117.4 (10)
F91B—C91—F91C 105.85 (17) C17—O20—C21 117.95 (13)
F91A—C91—F91C 106.47 (18) O20—C21—H21A 104.7 (14)
F91B—C91—C9 112.99 (17) O20—C21—H21B 110.5 (13)
F91A—C91—C9 111.93 (16) H21A—C21—H21B 109.4 (17)
F91C—C91—C9 112.29 (16) O20—C21—H21C 110.6 (12)
N1—C10—C5 123.12 (13) H21A—C21—H21C 110.3 (17)
N1—C10—C9 119.26 (13) H21B—C21—H21C 111.1 (18)
C5—C10—C9 117.63 (13) H1W1—O1W—H1W2 107 (2)
C4—N11—C12 109.27 (11)
C10—N1—C2—C3 0.5 (3) C8—C9—C10—N1 179.42 (16)
N1—C2—C3—C4 0.5 (3) C91—C9—C10—N1 −1.4 (2)
N1—C2—C3—C13 −179.65 (17) C8—C9—C10—C5 −0.8 (2)
C2—C3—C4—N11 179.62 (13) C91—C9—C10—C5 178.39 (15)
C13—C3—C4—N11 −0.26 (16) C3—C4—N11—C12 0.29 (15)
C2—C3—C4—C5 −1.0 (2) C5—C4—N11—C12 −179.04 (13)
C13—C3—C4—C5 179.15 (13) C4—N11—C12—C13 −0.21 (16)
N11—C4—C5—C6 −0.2 (2) C4—N11—C12—C14 −179.70 (12)
C3—C4—C5—C6 −179.49 (14) N11—C12—C13—C3 0.05 (17)
N11—C4—C5—C10 179.70 (13) C14—C12—C13—C3 179.47 (14)
C3—C4—C5—C10 0.45 (19) C4—C3—C13—C12 0.12 (17)
C4—C5—C6—C7 179.73 (15) C2—C3—C13—C12 −179.72 (18)
C10—C5—C6—C7 −0.2 (2) C13—C12—C14—C19 −168.59 (16)
C5—C6—C7—C8 −0.3 (3) N11—C12—C14—C19 10.8 (2)
C6—C7—C8—C9 0.2 (3) C13—C12—C14—C15 10.1 (2)
C7—C8—C9—C10 0.3 (3) N11—C12—C14—C15 −170.52 (13)
C7—C8—C9—C91 −178.87 (18) C19—C14—C15—C16 0.8 (2)
C8—C9—C91—F91B −121.27 (19) C12—C14—C15—C16 −177.96 (14)
C10—C9—C91—F91B 59.5 (2) C14—C15—C16—C17 −0.8 (2)
C8—C9—C91—F91A −0.6 (3) C15—C16—C17—O20 −179.21 (14)
C10—C9—C91—F91A −179.81 (17) C15—C16—C17—C18 0.0 (2)
C8—C9—C91—F91C 119.09 (18) O20—C17—C18—C19 179.80 (14)
C10—C9—C91—F91C −60.1 (2) C16—C17—C18—C19 0.6 (2)
C2—N1—C10—C5 −1.0 (2) C15—C14—C19—C18 −0.1 (2)
C2—N1—C10—C9 178.74 (15) C12—C14—C19—C18 178.60 (13)
C6—C5—C10—N1 −179.48 (14) C17—C18—C19—C14 −0.6 (2)
C4—C5—C10—N1 0.6 (2) C18—C17—O20—C21 −4.8 (2)
C6—C5—C10—C9 0.7 (2) C16—C17—O20—C21 174.42 (15)
C4—C5—C10—C9 −179.21 (12)

Hydrogen-bond geometry (Å, °)

CgA, CgB, CgD are the centroids of the C5–C9,C1C, N1,C2–C5,C1C and C14–C19 rings, respectively
D—H···A D—H H···A D···A D—H···A
C6—H6···O1W 0.987 (19) 2.42 (2) 3.340 (2) 155 (2)
N11—H11···O1W 0.92 (2) 1.94 (2) 2.845 (2) 167 (2)
C19—H19···O1W 0.977 (19) 2.49 (2) 3.439 (2) 164 (1)
C8—H8···O20i 1.02 (2) 2.45 (2) 3.427 (2) 160 (2)
O1W—H1W1···N1ii 0.91 (2) 1.93 (2) 2.807 (2) 161 (2)
C21—H21C···CgAiii 0.94 (2) 2.83 (2) 3.550 (2) 135 (2)
C21—H21B···CgBiv 0.97 (2) 2.72 (2) 3.503 (2) 138 (2)
O1W—H1W2···CgDiii 0.82 (3) 2.62 (3) 3.310 (2) 143 (2)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2190).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst 26, 343-350.
  3. Atwood, J. L., Hamada, F., Robinson, K. D., Orr, G. W. & Vincent, R. L. (1991). Nature (London), 349, 683–684.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Domenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281–324. New York: VCH.
  6. Dutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874. [DOI] [PMC free article] [PubMed]
  7. Fan, Z. & Chen, L. (1987). Acta Cryst. C43, 2206–2209.
  8. Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, o1150–o1151.
  9. Lynch, D. E., McClenaghan, I. & Light, M. E. (2001). Acta Cryst. E57, o56–o57. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  11. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Siemens (1989). Stereochemical Workstation Operation Manual Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013644/im2190sup1.cif

e-66-o1111-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013644/im2190Isup2.hkl

e-66-o1111-Isup2.hkl (158.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES