Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1079. doi: 10.1107/S1600536810012778

8-Bromo-3,4-dihydro-2H-1,3-thia­zino[2,3:2′,1′]imidazo[5′,4′-b]pyridine

Hend Bel Ghacham a, Youssef Kandri Rodi a, Frédéric Capet b, El Mokhtar Essassi c, Seik Weng Ng d,*
PMCID: PMC2979025  PMID: 21579133

Abstract

The imidazopyridine ring system in the title compound, C9H8BrN3S, is almost planar [r.m.s. deviation of the C and N atoms = 0.007 (1) Å]. The S and methyl­ene C atoms connected to the five-membered ring lie within this plane. The remaining two methyl­ene groups of the thia­zine ring are disordered over two sets of sites in a 0.817 (5):0.183 (5) ratio.

Related literature

The parent triclyclic condensed imidazole (without bromine) has been patented as a pharmaceutical; see: Hideg et al. (1975, 1976). For other compounds synthesized from 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione, see: Liszkiewicz et al. (2007); Prasad et al. (1986); Yutilov & Svertilova (1988).graphic file with name e-66-o1079-scheme1.jpg

Experimental

Crystal data

  • C9H8BrN3S

  • M r = 270.15

  • Monoclinic, Inline graphic

  • a = 20.2738 (3) Å

  • b = 13.2786 (2) Å

  • c = 7.3169 (1) Å

  • β = 102.193 (1)°

  • V = 1925.33 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.45 mm−1

  • T = 100 K

  • 0.46 × 0.14 × 0.12 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.234, T max = 0.618

  • 30460 measured reflections

  • 3561 independent reflections

  • 3003 reflections with I > 2σ(I)

  • R int = 0.039

  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 0.99

  • 3561 reflections

  • 146 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012778/bt5242sup1.cif

e-66-o1079-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012778/bt5242Isup2.hkl

e-66-o1079-Isup2.hkl (174.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University Sidi Mohammed Ben Abdallah, the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Commerically-available 6-bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione has been used to react with a range of organic compounds to furnish chemicals having useful biological activities (Liszkiewicz et al., 2007; Prasad et al., 1986; Yutilov & Svertilova, 1988). The compound reacts with 1-chloropropanal under catalytic conditions to yield the title triclyclic condensed imidazole (Scheme I, Fig. 1). The imidazopyridine fused ring is planar. One ethylene fragment of the six-membered ring is twisted such that one atom lies above and the other below the plane. This fragment is disordered over two positions.

Experimental

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione (1 mmol), potassium carbonate (4 mmol), tetra-n-butylammonium bromide (0.1 mmol) and 1-chloro-propanol (1.5 mmol) in DMF (15 ml) were stirred for 72 h. After completion of reaction (as monitored by TLC), the salt was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using chloroform/hexane (1/1) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement

H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The two methylene atoms next to the S atom are disordered over two sites; the disorder refined to an 0.817 (5):0.183 (5) ratio. The pair of S—C distances were restrained to be equal within 0.01 Å of each other, as were the pair of C—C distances. The anisotropic temperature factors of the primed atoms were restrained to be nearly isotropic.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of C9H8BrN3O at the 70% probability level; H atoms are drawn as spheres of an arbitrary radius. The disorder is not shown.

Crystal data

C9H8BrN3S F(000) = 1072
Mr = 270.15 Dx = 1.864 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 9070 reflections
a = 20.2738 (3) Å θ = 2.8–32.5°
b = 13.2786 (2) Å µ = 4.45 mm1
c = 7.3169 (1) Å T = 100 K
β = 102.193 (1)° Block, colourless
V = 1925.33 (5) Å3 0.46 × 0.14 × 0.12 mm
Z = 8

Data collection

Bruker X8 APEXII diffractometer 3561 independent reflections
Radiation source: fine-focus sealed tube 3003 reflections with I > 2σ(I)
graphite Rint = 0.039
φ and ω scans θmax = 32.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −30→30
Tmin = 0.234, Tmax = 0.618 k = −20→20
30460 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.6536P] where P = (Fo2 + 2Fc2)/3
3561 reflections (Δ/σ)max = 0.001
146 parameters Δρmax = 0.49 e Å3
14 restraints Δρmin = −0.55 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.446434 (7) 0.655625 (11) 0.45346 (2) 0.02338 (5)
S1 0.082325 (17) 0.50817 (3) 0.60465 (5) 0.01612 (7)
N1 0.20317 (6) 0.43515 (8) 0.54957 (17) 0.0139 (2)
N2 0.19469 (6) 0.60483 (9) 0.56459 (18) 0.0162 (2)
N3 0.31734 (6) 0.42166 (9) 0.50005 (18) 0.0167 (2)
C1 0.07654 (9) 0.37320 (13) 0.6425 (4) 0.0175 (4) 0.817 (5)
H1A 0.0993 0.3568 0.7726 0.021* 0.817 (5)
H1B 0.0285 0.3537 0.6256 0.021* 0.817 (5)
C2 0.10897 (9) 0.31333 (13) 0.5076 (3) 0.0178 (4) 0.817 (5)
H2A 0.0888 0.3342 0.3780 0.021* 0.817 (5)
H2B 0.0991 0.2409 0.5196 0.021* 0.817 (5)
C1' 0.0642 (4) 0.3746 (5) 0.5409 (16) 0.0186 (18) 0.183 (5)
H1'A 0.0233 0.3527 0.5836 0.022* 0.183 (5)
H1'B 0.0556 0.3670 0.4033 0.022* 0.183 (5)
C2' 0.1237 (3) 0.3089 (6) 0.6309 (11) 0.0158 (18) 0.183 (5)
H2'A 0.1106 0.2371 0.6148 0.019* 0.183 (5)
H2'B 0.1360 0.3232 0.7667 0.019* 0.183 (5)
C3 0.18508 (7) 0.32823 (10) 0.5435 (2) 0.0179 (3)
H3A 0.2062 0.2962 0.6639 0.021* 0.817 (5)
H3B 0.2030 0.2947 0.4433 0.021* 0.817 (5)
H3C 0.2240 0.2887 0.6118 0.021* 0.183 (5)
H3D 0.1748 0.3051 0.4119 0.021* 0.183 (5)
C4 0.16459 (7) 0.51691 (10) 0.57248 (19) 0.0142 (2)
C5 0.26416 (7) 0.47390 (10) 0.52582 (19) 0.0140 (2)
C6 0.25763 (7) 0.57918 (10) 0.53377 (19) 0.0143 (2)
C7 0.31223 (7) 0.63821 (10) 0.5118 (2) 0.0166 (2)
H7 0.3111 0.7097 0.5143 0.020*
C8 0.36844 (7) 0.58455 (10) 0.4857 (2) 0.0158 (2)
C9 0.37001 (7) 0.47932 (11) 0.4812 (2) 0.0175 (3)
H9 0.4101 0.4471 0.4641 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01399 (7) 0.02031 (8) 0.03740 (10) −0.00406 (5) 0.00897 (6) 0.00137 (6)
S1 0.01303 (14) 0.01364 (14) 0.02374 (16) 0.00071 (11) 0.00854 (12) −0.00036 (12)
N1 0.0120 (5) 0.0103 (4) 0.0206 (5) −0.0002 (4) 0.0058 (4) −0.0006 (4)
N2 0.0136 (5) 0.0117 (5) 0.0246 (6) 0.0011 (4) 0.0068 (4) 0.0003 (4)
N3 0.0131 (5) 0.0136 (5) 0.0244 (6) 0.0008 (4) 0.0065 (4) −0.0004 (4)
C1 0.0156 (8) 0.0145 (7) 0.0240 (11) −0.0020 (6) 0.0079 (7) 0.0010 (7)
C2 0.0155 (7) 0.0133 (7) 0.0255 (11) −0.0024 (6) 0.0066 (7) −0.0022 (6)
C1' 0.020 (4) 0.015 (3) 0.023 (5) −0.005 (3) 0.009 (3) −0.001 (3)
C2' 0.016 (3) 0.013 (3) 0.020 (4) −0.001 (2) 0.005 (3) 0.002 (3)
C3 0.0153 (6) 0.0099 (5) 0.0301 (7) −0.0009 (4) 0.0088 (5) −0.0011 (5)
C4 0.0128 (5) 0.0125 (5) 0.0183 (6) 0.0014 (4) 0.0054 (4) −0.0002 (5)
C5 0.0123 (5) 0.0122 (5) 0.0179 (6) −0.0001 (4) 0.0043 (4) −0.0003 (4)
C6 0.0132 (5) 0.0114 (5) 0.0187 (6) 0.0005 (4) 0.0041 (5) 0.0006 (4)
C7 0.0144 (6) 0.0128 (5) 0.0230 (6) −0.0008 (4) 0.0047 (5) 0.0008 (5)
C8 0.0119 (5) 0.0153 (6) 0.0208 (6) −0.0022 (4) 0.0046 (5) 0.0011 (5)
C9 0.0128 (6) 0.0160 (6) 0.0250 (7) 0.0010 (5) 0.0067 (5) 0.0002 (5)

Geometric parameters (Å, °)

Br1—C8 1.8986 (13) C1'—C2' 1.521 (13)
S1—C4 1.7367 (14) C1'—H1'A 0.9900
S1—C1 1.8211 (18) C1'—H1'B 0.9900
S1—C1' 1.851 (6) C2'—C3 1.536 (6)
N1—C4 1.3689 (17) C2'—H2'A 0.9900
N1—C5 1.3836 (17) C2'—H2'B 0.9900
N1—C3 1.4647 (17) C3—H3A 0.9900
N2—C4 1.3243 (17) C3—H3B 0.9900
N2—C6 1.3844 (17) C3—H3C 0.9900
N3—C5 1.3286 (17) C3—H3D 0.9900
N3—C9 1.3445 (18) C5—C6 1.4067 (18)
C1—C2 1.521 (3) C6—C7 1.3931 (19)
C1—H1A 0.9900 C7—C8 1.391 (2)
C1—H1B 0.9900 C7—H7 0.9500
C2—C3 1.522 (2) C8—C9 1.3982 (19)
C2—H2A 0.9900 C9—H9 0.9500
C2—H2B 0.9900
C4—S1—C1 100.42 (7) N1—C3—C2 111.68 (12)
C4—S1—C1' 100.1 (3) N1—C3—C2' 111.7 (3)
C4—N1—C5 105.63 (11) N1—C3—H3A 109.3
C4—N1—C3 128.79 (12) C2—C3—H3A 109.3
C5—N1—C3 125.55 (11) N1—C3—H3B 109.3
C4—N2—C6 103.85 (11) C2—C3—H3B 109.3
C5—N3—C9 113.77 (12) H3A—C3—H3B 107.9
C2—C1—S1 111.42 (14) N1—C3—H3C 109.3
C2—C1—H1A 109.3 C2'—C3—H3C 109.3
S1—C1—H1A 109.3 N1—C3—H3D 109.3
C2—C1—H1B 109.3 C2'—C3—H3D 109.3
S1—C1—H1B 109.3 H3C—C3—H3D 107.9
H1A—C1—H1B 108.0 N2—C4—N1 114.41 (12)
C1—C2—C3 112.43 (15) N2—C4—S1 121.96 (10)
C1—C2—H2A 109.1 N1—C4—S1 123.61 (10)
C3—C2—H2A 109.1 N3—C5—N1 126.67 (12)
C1—C2—H2B 109.1 N3—C5—C6 127.66 (13)
C3—C2—H2B 109.1 N1—C5—C6 105.67 (11)
H2A—C2—H2B 107.8 N2—C6—C7 131.50 (12)
C2'—C1'—S1 110.1 (6) N2—C6—C5 110.44 (12)
C2'—C1'—H1'A 109.6 C7—C6—C5 118.06 (12)
S1—C1'—H1'A 109.6 C8—C7—C6 114.94 (12)
C2'—C1'—H1'B 109.6 C8—C7—H7 122.5
S1—C1'—H1'B 109.6 C6—C7—H7 122.5
H1'A—C1'—H1'B 108.2 C7—C8—C9 122.59 (13)
C1'—C2'—C3 111.2 (6) C7—C8—Br1 119.37 (10)
C1'—C2'—H2'A 109.4 C9—C8—Br1 118.04 (10)
C3—C2'—H2'A 109.4 N3—C9—C8 122.97 (13)
C1'—C2'—H2'B 109.4 N3—C9—H9 118.5
C3—C2'—H2'B 109.4 C8—C9—H9 118.5
H2'A—C2'—H2'B 108.0
C4—S1—C1—C2 −42.19 (16) C1—S1—C4—N1 10.57 (15)
C1'—S1—C1—C2 49.0 (7) C1'—S1—C4—N1 −12.8 (4)
S1—C1—C2—C3 67.0 (2) C9—N3—C5—N1 −179.92 (13)
C4—S1—C1'—C2' 44.5 (7) C9—N3—C5—C6 0.4 (2)
C1—S1—C1'—C2' −48.5 (7) C4—N1—C5—N3 179.51 (14)
S1—C1'—C2'—C3 −69.0 (8) C3—N1—C5—N3 −2.5 (2)
C4—N1—C3—C2 17.2 (2) C4—N1—C5—C6 −0.78 (15)
C5—N1—C3—C2 −160.32 (14) C3—N1—C5—C6 177.23 (13)
C4—N1—C3—C2' −19.3 (4) C4—N2—C6—C7 179.69 (15)
C5—N1—C3—C2' 163.2 (3) C4—N2—C6—C5 −0.67 (16)
C1—C2—C3—N1 −52.1 (2) N3—C5—C6—N2 −179.37 (14)
C1—C2—C3—C2' 44.8 (5) N1—C5—C6—N2 0.92 (16)
C1'—C2'—C3—N1 54.3 (7) N3—C5—C6—C7 0.3 (2)
C1'—C2'—C3—C2 −42.7 (5) N1—C5—C6—C7 −179.37 (12)
C6—N2—C4—N1 0.15 (16) N2—C6—C7—C8 178.98 (14)
C6—N2—C4—S1 −178.61 (10) C5—C6—C7—C8 −0.6 (2)
C5—N1—C4—N2 0.41 (16) C6—C7—C8—C9 0.3 (2)
C3—N1—C4—N2 −177.51 (14) C6—C7—C8—Br1 179.90 (10)
C5—N1—C4—S1 179.16 (10) C5—N3—C9—C8 −0.9 (2)
C3—N1—C4—S1 1.2 (2) C7—C8—C9—N3 0.6 (2)
C1—S1—C4—N2 −170.77 (14) Br1—C8—C9—N3 −179.09 (11)
C1'—S1—C4—N2 165.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5242).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1975). Ger. Patent DE 2429290 19750116.
  4. Hideg, K., Hankovszky, O., Palosi, E., Hajos, G. & Szporny, L. (1976). Hung. Patent HU 12392 19761028.
  5. Liszkiewicz, H., Kowalska, M. W. & Wietrzyk, J. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 199–208.
  6. Prasad, A. R., Rao, A. N., Ramalingam, T. & Sattur, P. B. (1986). Indian J. Chem. Sect. B, 25, 776–778.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Westrip, S. P. (2010). publCIF In preparation.
  10. Yutilov, Yu. M. & Svertilova, I. A. (1988). Khim. Geterotsikl. Soedin. pp. 799–804.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012778/bt5242sup1.cif

e-66-o1079-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012778/bt5242Isup2.hkl

e-66-o1079-Isup2.hkl (174.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES