Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):m565. doi: 10.1107/S1600536810014054

Dichlorido[(R,R)-N 1,N 1,N 2-tribenzyl­cyclo­hexane-1,2-diamine-κ2 N 1,N 2]copper(II)

Quang Trung Nguyen a, Jong Hwa Jeong a,*
PMCID: PMC2979043  PMID: 21579047

Abstract

In the title compound, [CuCl2(C27H32N2)], which bears a chiral diamine ligand, viz (R,R)-N,N,N′′- tribenzyl­cyclo­hexane-1,2-diamine, the CuII ion is ligated by two N and two Cl atoms in a distorted square-planar geometry. The coordination of the ligands to the CuII ion results in the formation of a five-membered heterocyclic ring and a chiral center at the monosubstituted nitro­gen in an (S)-configuration. The catalytic capacity of the complex for the asymmetric nitro­aldol reaction is promising (49% ee).

Related literature

For the synthesis of N,N,N′′-tribenzyl-(R,R)-1,2-diamino­cyclo­hexane, see: Tye et al. (2002); Boyd et al. (2005). For related structures, see: Alexakis et al. (2001); Tye et al. (2002); Boyd et al. (2005, 2006); Arjan et al. (2005); Brethon et al. (2004); Jones & Mahon (2008); Evans & Seidel (2005); Evans et al. (2007); Roh et al. (2004); Nguyen & Jeong (2008a ,b ).graphic file with name e-66-0m565-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C27H32N2)]

  • M r = 519.00

  • Orthorhombic, Inline graphic

  • a = 10.5806 (7) Å

  • b = 15.4409 (8) Å

  • c = 16.2579 (12) Å

  • V = 2656.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: analytical (ABSCALC; McArdle & Daly, 1999) T min = 0.660, T max = 0.666

  • 5793 measured reflections

  • 4931 independent reflections

  • 3885 reflections with I > 2σ(I)

  • R int = 0.019

  • 3 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.083

  • S = 1.06

  • 4931 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: −0.017 (13)

Data collection: CAD4 (Enraf–Nonius, 1989); cell refinement: CAD4; data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014054/rk2198sup1.cif

e-66-0m565-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014054/rk2198Isup2.hkl

e-66-0m565-Isup2.hkl (241.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Kyungpook National University Research Fund, 2008.

supplementary crystallographic information

Comment

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

Experimental

A solution of N,N,N'-tribenzyl-(R,R)- 1,2-diaminocyclohexane (1.57 g, 4.08 mmol) in ethanol (5 ml) was added slowly to a solution of CuCl2.2H2O (0.69 g, 4.01 mmol) in ethanol (10 ml) Tye et al., (2002); Boyd et al., (2005). The mixture was stirred overnight at ambient temperature. The solvent was removed to yield blue solids. The product was re–crystallized from anhydrous ethanol to afford blue crystals (1.64 g, yield 79%). Anal. Calc. for C27H32Cl2CuN2: C 62.48, H 6.21, N 5.40 and found: C 62.20, H 6.30, N 5.46%.

Refinement

H–atom of N—H was refined with Uiso(H) = 1.2Ueq(N). All H–atoms placed on C atoms were positioned geometrically and refined using a riding model with C—H = 0.97Å for methylene, C—H = 0.98Å for methine, C—H = 0.93Å for aromatic H atoms. For all H atoms Uiso(H) = 1.2Ueq(C).

In the crystal structure was found 'accessible void' with volume 54.00Å3.

Figures

Fig. 1.

Fig. 1.

A view of title compound molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are presented as a small spheres of arbitrary radius.

Crystal data

[CuCl2(C27H32N2)] F(000) = 1084
Mr = 519.00 Dx = 1.298 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 10.5806 (7) Å θ = 10–13°
b = 15.4409 (8) Å µ = 1.04 mm1
c = 16.2579 (12) Å T = 295 K
V = 2656.1 (3) Å3 Block, blue
Z = 4 0.40 × 0.40 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
graphite θmax = 25.5°, θmin = 1.8°
ω/2θ scans h = −12→12
Absorption correction: analytical (ABSCALC; McArdle & Daly, 1999) k = −18→18
Tmin = 0.660, Tmax = 0.666 l = −19→19
5793 measured reflections 3 standard reflections every 60 min
4931 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4931 reflections Δρmax = 0.33 e Å3
292 parameters Δρmin = −0.24 e Å3
0 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: −0.017 (13)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.03338 (3) 0.43742 (2) 0.76295 (2) 0.03853 (10)
Cl1 −0.03484 (8) 0.33981 (5) 0.85529 (5) 0.05231 (19)
Cl2 −0.10262 (9) 0.40812 (6) 0.66326 (6) 0.0609 (2)
N1 0.0744 (2) 0.56146 (15) 0.72591 (14) 0.0361 (5)
N2 0.2032 (2) 0.43863 (17) 0.81961 (17) 0.0403 (5)
H2 0.193 (3) 0.438 (2) 0.871 (2) 0.048*
C1 0.1701 (3) 0.59164 (18) 0.78886 (17) 0.0352 (6)
H1 0.1234 0.5982 0.8406 0.042*
C2 0.2323 (3) 0.67928 (19) 0.7726 (2) 0.0476 (7)
H2A 0.2862 0.6755 0.7245 0.057*
H2B 0.1679 0.7226 0.7621 0.057*
C3 0.3099 (4) 0.7054 (2) 0.8468 (2) 0.0561 (9)
H3A 0.3490 0.7612 0.8368 0.067*
H3B 0.2552 0.7108 0.8944 0.067*
C4 0.4109 (3) 0.6388 (2) 0.8639 (2) 0.0602 (9)
H4A 0.4581 0.6556 0.9125 0.072*
H4B 0.4692 0.6366 0.8179 0.072*
C5 0.3532 (3) 0.5492 (2) 0.8772 (2) 0.0489 (8)
H5A 0.3028 0.5498 0.9271 0.059*
H5B 0.4204 0.5072 0.8845 0.059*
C6 0.2699 (3) 0.52161 (18) 0.8048 (2) 0.0373 (7)
H6 0.3229 0.5156 0.7557 0.045*
C7 −0.0463 (3) 0.61569 (18) 0.73180 (19) 0.0433 (7)
H7A −0.0267 0.6739 0.7135 0.052*
H7B −0.1075 0.5919 0.6936 0.052*
C8 −0.1073 (3) 0.62181 (19) 0.8143 (2) 0.0428 (7)
C9 −0.1934 (3) 0.5605 (2) 0.8410 (2) 0.0544 (8)
H9 −0.2095 0.5122 0.8085 0.065*
C10 −0.2553 (3) 0.5697 (3) 0.9143 (3) 0.0645 (10)
H10 −0.3108 0.5267 0.9317 0.077*
C11 −0.2371 (4) 0.6404 (3) 0.9621 (2) 0.0628 (10)
H11 −0.2812 0.6469 1.0112 0.075*
C12 −0.1515 (4) 0.7031 (3) 0.9366 (2) 0.0609 (10)
H12 −0.1373 0.7517 0.9692 0.073*
C13 −0.0880 (4) 0.6938 (2) 0.8638 (2) 0.0530 (9)
H13 −0.0312 0.7364 0.8473 0.064*
C14 0.1132 (3) 0.5719 (2) 0.63786 (17) 0.0465 (7)
H14A 0.1232 0.6333 0.6273 0.056*
H14B 0.0438 0.5518 0.6038 0.056*
C15 0.2318 (3) 0.5269 (2) 0.60886 (19) 0.0502 (8)
C16 0.2368 (4) 0.4375 (3) 0.59948 (19) 0.0564 (8)
H16 0.1669 0.4039 0.6127 0.068*
C17 0.3453 (4) 0.3988 (3) 0.5705 (3) 0.0759 (12)
H17 0.3495 0.3388 0.5664 0.091*
C18 0.4472 (5) 0.4482 (4) 0.5478 (3) 0.1003 (17)
H18 0.5202 0.4216 0.5284 0.120*
C19 0.4416 (5) 0.5367 (4) 0.5536 (3) 0.0976 (17)
H19 0.5098 0.5703 0.5368 0.117*
C20 0.3350 (4) 0.5754 (3) 0.5844 (2) 0.0744 (12)
H20 0.3320 0.6354 0.5888 0.089*
C21 0.2727 (3) 0.3570 (2) 0.7986 (2) 0.0551 (9)
H21A 0.2184 0.3082 0.8114 0.066*
H21B 0.2874 0.3562 0.7397 0.066*
C22 0.3962 (3) 0.34379 (19) 0.8410 (2) 0.0432 (7)
C23 0.4030 (4) 0.3147 (3) 0.9210 (2) 0.0631 (10)
H23 0.3292 0.3016 0.9495 0.076*
C24 0.5196 (5) 0.3048 (2) 0.9596 (2) 0.0737 (12)
H24 0.5238 0.2849 1.0135 0.088*
C25 0.6279 (4) 0.3247 (3) 0.9178 (3) 0.0705 (12)
H25 0.7056 0.3197 0.9440 0.085*
C26 0.6229 (3) 0.3515 (2) 0.8387 (3) 0.0621 (10)
H26 0.6970 0.3628 0.8099 0.075*
C27 0.5094 (3) 0.3617 (2) 0.8020 (2) 0.0517 (8)
H27 0.5073 0.3816 0.7480 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.03398 (17) 0.03603 (16) 0.04556 (19) 0.00039 (16) −0.00646 (17) −0.00163 (15)
Cl1 0.0463 (4) 0.0478 (4) 0.0629 (5) −0.0078 (4) −0.0052 (4) 0.0079 (3)
Cl2 0.0622 (5) 0.0594 (5) 0.0612 (5) −0.0084 (4) −0.0245 (4) −0.0054 (4)
N1 0.0349 (11) 0.0387 (11) 0.0348 (12) 0.0045 (10) −0.0041 (9) −0.0005 (11)
N2 0.0347 (12) 0.0368 (12) 0.0494 (14) 0.0047 (12) −0.0050 (11) −0.0005 (13)
C1 0.0369 (15) 0.0370 (15) 0.0317 (15) 0.0021 (12) −0.0037 (12) −0.0027 (11)
C2 0.0491 (17) 0.0375 (15) 0.0563 (19) −0.0031 (13) −0.0058 (16) −0.0004 (15)
C3 0.060 (2) 0.0404 (18) 0.068 (2) −0.0031 (16) −0.0085 (19) −0.0075 (16)
C4 0.0491 (19) 0.056 (2) 0.075 (2) −0.0027 (17) −0.0152 (18) −0.0130 (18)
C5 0.0405 (17) 0.046 (2) 0.060 (2) 0.0053 (14) −0.0171 (15) −0.0075 (15)
C6 0.0308 (15) 0.0376 (15) 0.0435 (17) 0.0020 (13) −0.0003 (13) −0.0048 (13)
C7 0.0416 (16) 0.0432 (15) 0.0452 (15) 0.0113 (13) −0.0069 (16) 0.0001 (13)
C8 0.0360 (16) 0.0383 (16) 0.0540 (19) 0.0081 (14) −0.0024 (15) 0.0009 (14)
C9 0.0398 (17) 0.0482 (18) 0.075 (2) −0.0005 (17) −0.0008 (17) −0.0117 (19)
C10 0.0439 (19) 0.062 (2) 0.087 (3) −0.0029 (19) 0.0155 (18) 0.007 (2)
C11 0.058 (2) 0.071 (3) 0.060 (2) 0.016 (2) 0.0131 (18) 0.004 (2)
C12 0.070 (2) 0.055 (2) 0.057 (2) 0.0071 (19) 0.0078 (19) −0.0099 (17)
C13 0.061 (2) 0.0385 (17) 0.059 (2) 0.0054 (15) 0.0057 (17) 0.0001 (15)
C14 0.0547 (18) 0.0492 (18) 0.0357 (15) 0.0029 (17) 0.0005 (14) 0.0012 (14)
C15 0.061 (2) 0.058 (2) 0.0313 (16) −0.0050 (17) 0.0085 (15) −0.0060 (14)
C16 0.065 (2) 0.061 (2) 0.0434 (18) −0.002 (2) 0.0110 (15) −0.0125 (18)
C17 0.081 (3) 0.075 (3) 0.072 (3) 0.008 (2) 0.012 (2) −0.027 (2)
C18 0.075 (3) 0.127 (4) 0.099 (3) 0.005 (3) 0.036 (3) −0.035 (3)
C19 0.082 (3) 0.115 (4) 0.096 (3) −0.022 (3) 0.047 (3) −0.017 (3)
C20 0.085 (3) 0.076 (3) 0.062 (2) −0.015 (2) 0.029 (2) −0.006 (2)
C21 0.0438 (19) 0.0413 (18) 0.080 (2) 0.0136 (15) −0.0093 (18) −0.0090 (17)
C22 0.0367 (16) 0.0350 (15) 0.058 (2) 0.0057 (13) 0.0038 (15) 0.0010 (14)
C23 0.059 (2) 0.061 (2) 0.070 (3) 0.0144 (19) 0.020 (2) 0.0199 (19)
C24 0.096 (3) 0.071 (3) 0.055 (2) 0.030 (3) −0.005 (2) 0.0129 (18)
C25 0.054 (2) 0.071 (3) 0.086 (3) 0.019 (2) −0.017 (2) −0.008 (2)
C26 0.0404 (19) 0.050 (2) 0.096 (3) 0.0027 (16) 0.008 (2) −0.001 (2)
C27 0.046 (2) 0.0439 (17) 0.065 (2) 0.0104 (14) 0.0076 (16) 0.0028 (15)

Geometric parameters (Å, °)

Cu—N2 2.019 (2) C10—H10 0.9300
Cu—N1 2.054 (2) C11—C12 1.389 (5)
Cu—Cl2 2.2141 (9) C11—H11 0.9300
Cu—Cl1 2.2463 (8) C12—C13 1.369 (5)
N1—C14 1.498 (4) C12—H12 0.9300
N1—C1 1.513 (3) C13—H13 0.9300
N1—C7 1.530 (3) C14—C15 1.511 (5)
N2—C6 1.482 (4) C14—H14A 0.9700
N2—C21 1.499 (4) C14—H14B 0.9700
N2—H2 0.85 (3) C15—C20 1.383 (5)
C1—C2 1.528 (4) C15—C16 1.389 (5)
C1—C6 1.533 (4) C16—C17 1.377 (5)
C1—H1 0.9800 C16—H16 0.9300
C2—C3 1.513 (5) C17—C18 1.371 (6)
C2—H2A 0.9700 C17—H17 0.9300
C2—H2B 0.9700 C18—C19 1.371 (7)
C3—C4 1.509 (5) C18—H18 0.9300
C3—H3A 0.9700 C19—C20 1.371 (6)
C3—H3B 0.9700 C19—H19 0.9300
C4—C5 1.528 (5) C20—H20 0.9300
C4—H4A 0.9700 C21—C22 1.492 (5)
C4—H4B 0.9700 C21—H21A 0.9700
C5—C6 1.531 (4) C21—H21B 0.9700
C5—H5A 0.9700 C22—C23 1.379 (5)
C5—H5B 0.9700 C22—C27 1.383 (4)
C6—H6 0.9800 C23—C24 1.392 (6)
C7—C8 1.492 (4) C23—H23 0.9300
C7—H7A 0.9700 C24—C25 1.366 (6)
C7—H7B 0.9700 C24—H24 0.9300
C8—C9 1.383 (5) C25—C26 1.352 (6)
C8—C13 1.388 (5) C25—H25 0.9300
C9—C10 1.368 (5) C26—C27 1.350 (5)
C9—H9 0.9300 C26—H26 0.9300
C10—C11 1.354 (6) C27—H27 0.9300
N2—Cu—N1 86.39 (10) C10—C9—C8 121.2 (4)
N2—Cu—Cl2 156.09 (8) C10—C9—H9 119.4
N1—Cu—Cl2 96.50 (7) C8—C9—H9 119.4
N2—Cu—Cl1 89.27 (8) C11—C10—C9 121.1 (4)
N1—Cu—Cl1 152.80 (7) C11—C10—H10 119.5
Cl2—Cu—Cl1 98.24 (4) C9—C10—H10 119.5
C14—N1—C1 115.5 (2) C10—C11—C12 118.9 (4)
C14—N1—C7 103.3 (2) C10—C11—H11 120.5
C1—N1—C7 110.3 (2) C12—C11—H11 120.5
C14—N1—Cu 115.99 (19) C13—C12—C11 120.4 (4)
C1—N1—Cu 103.32 (16) C13—C12—H12 119.8
C7—N1—Cu 108.40 (17) C11—C12—H12 119.8
C6—N2—C21 117.2 (2) C12—C13—C8 120.9 (3)
C6—N2—Cu 110.95 (18) C12—C13—H13 119.6
C21—N2—Cu 108.9 (2) C8—C13—H13 119.6
C6—N2—H2 103 (2) N1—C14—C15 118.5 (3)
C21—N2—H2 106 (2) N1—C14—H14A 107.7
Cu—N2—H2 110 (2) C15—C14—H14A 107.7
N1—C1—C2 116.4 (2) N1—C14—H14B 107.7
N1—C1—C6 111.0 (2) C15—C14—H14B 107.7
C2—C1—C6 111.0 (2) H14A—C14—H14B 107.1
N1—C1—H1 105.9 C20—C15—C16 118.5 (3)
C2—C1—H1 105.9 C20—C15—C14 119.8 (3)
C6—C1—H1 105.9 C16—C15—C14 121.5 (3)
C3—C2—C1 109.4 (3) C17—C16—C15 120.0 (4)
C3—C2—H2A 109.8 C17—C16—H16 120.0
C1—C2—H2A 109.8 C15—C16—H16 120.0
C3—C2—H2B 109.8 C18—C17—C16 120.4 (4)
C1—C2—H2B 109.8 C18—C17—H17 119.8
H2A—C2—H2B 108.2 C16—C17—H17 119.8
C4—C3—C2 110.5 (3) C19—C18—C17 120.1 (5)
C4—C3—H3A 109.6 C19—C18—H18 119.9
C2—C3—H3A 109.6 C17—C18—H18 119.9
C4—C3—H3B 109.6 C18—C19—C20 119.7 (5)
C2—C3—H3B 109.6 C18—C19—H19 120.2
H3A—C3—H3B 108.1 C20—C19—H19 120.2
C3—C4—C5 111.1 (3) C19—C20—C15 121.2 (4)
C3—C4—H4A 109.4 C19—C20—H20 119.4
C5—C4—H4A 109.4 C15—C20—H20 119.4
C3—C4—H4B 109.4 C22—C21—N2 116.0 (3)
C5—C4—H4B 109.4 C22—C21—H21A 108.3
H4A—C4—H4B 108.0 N2—C21—H21A 108.3
C4—C5—C6 111.9 (3) C22—C21—H21B 108.3
C4—C5—H5A 109.2 N2—C21—H21B 108.3
C6—C5—H5A 109.2 H21A—C21—H21B 107.4
C4—C5—H5B 109.2 C23—C22—C27 116.9 (3)
C6—C5—H5B 109.2 C23—C22—C21 121.8 (3)
H5A—C5—H5B 107.9 C27—C22—C21 121.3 (3)
N2—C6—C5 112.9 (3) C22—C23—C24 120.5 (4)
N2—C6—C1 108.0 (2) C22—C23—H23 119.8
C5—C6—C1 109.3 (2) C24—C23—H23 119.8
N2—C6—H6 108.8 C25—C24—C23 119.6 (3)
C5—C6—H6 108.8 C25—C24—H24 120.2
C1—C6—H6 108.8 C23—C24—H24 120.2
C8—C7—N1 116.9 (2) C26—C25—C24 120.6 (4)
C8—C7—H7A 108.1 C26—C25—H25 119.7
N1—C7—H7A 108.1 C24—C25—H25 119.7
C8—C7—H7B 108.1 C27—C26—C25 119.4 (4)
N1—C7—H7B 108.1 C27—C26—H26 120.3
H7A—C7—H7B 107.3 C25—C26—H26 120.3
C9—C8—C13 117.6 (3) C26—C27—C22 123.0 (3)
C9—C8—C7 121.6 (3) C26—C27—H27 118.5
C13—C8—C7 120.6 (3) C22—C27—H27 118.5
N2—Cu—N1—C14 104.1 (2) C1—N1—C7—C8 −53.7 (3)
Cl2—Cu—N1—C14 −52.04 (19) Cu—N1—C7—C8 58.8 (3)
Cl1—Cu—N1—C14 −174.54 (15) N1—C7—C8—C9 −86.8 (3)
N2—Cu—N1—C1 −23.25 (17) N1—C7—C8—C13 99.2 (3)
Cl2—Cu—N1—C1 −179.41 (15) C13—C8—C9—C10 −1.4 (5)
Cl1—Cu—N1—C1 58.1 (2) C7—C8—C9—C10 −175.5 (3)
N2—Cu—N1—C7 −140.32 (18) C8—C9—C10—C11 2.0 (6)
Cl2—Cu—N1—C7 63.51 (17) C9—C10—C11—C12 −1.7 (6)
Cl1—Cu—N1—C7 −59.0 (2) C10—C11—C12—C13 0.8 (6)
N1—Cu—N2—C6 −1.8 (2) C11—C12—C13—C8 −0.3 (6)
Cl2—Cu—N2—C6 96.1 (3) C9—C8—C13—C12 0.5 (5)
Cl1—Cu—N2—C6 −154.94 (19) C7—C8—C13—C12 174.8 (3)
N1—Cu—N2—C21 −132.2 (2) C1—N1—C14—C15 59.0 (4)
Cl2—Cu—N2—C21 −34.3 (3) C7—N1—C14—C15 179.6 (3)
Cl1—Cu—N2—C21 74.7 (2) Cu—N1—C14—C15 −62.0 (3)
C14—N1—C1—C2 45.3 (3) N1—C14—C15—C20 −114.2 (4)
C7—N1—C1—C2 −71.3 (3) N1—C14—C15—C16 71.3 (4)
Cu—N1—C1—C2 173.0 (2) C20—C15—C16—C17 3.5 (5)
C14—N1—C1—C6 −82.8 (3) C14—C15—C16—C17 178.0 (3)
C7—N1—C1—C6 160.6 (2) C15—C16—C17—C18 −2.5 (6)
Cu—N1—C1—C6 44.9 (2) C16—C17—C18—C19 −0.1 (8)
N1—C1—C2—C3 171.8 (3) C17—C18—C19—C20 1.7 (8)
C6—C1—C2—C3 −60.1 (3) C18—C19—C20—C15 −0.7 (8)
C1—C2—C3—C4 59.6 (4) C16—C15—C20—C19 −1.9 (6)
C2—C3—C4—C5 −57.4 (4) C14—C15—C20—C19 −176.5 (4)
C3—C4—C5—C6 55.2 (4) C6—N2—C21—C22 57.9 (4)
C21—N2—C6—C5 −86.4 (3) Cu—N2—C21—C22 −175.2 (3)
Cu—N2—C6—C5 147.6 (2) N2—C21—C22—C23 78.9 (4)
C21—N2—C6—C1 152.6 (3) N2—C21—C22—C27 −100.0 (4)
Cu—N2—C6—C1 26.6 (3) C27—C22—C23—C24 0.3 (5)
C4—C5—C6—N2 −174.6 (3) C21—C22—C23—C24 −178.6 (3)
C4—C5—C6—C1 −54.3 (4) C22—C23—C24—C25 0.4 (6)
N1—C1—C6—N2 −48.7 (3) C23—C24—C25—C26 −1.8 (6)
C2—C1—C6—N2 −179.7 (2) C24—C25—C26—C27 2.4 (6)
N1—C1—C6—C5 −171.9 (2) C25—C26—C27—C22 −1.7 (6)
C2—C1—C6—C5 57.1 (3) C23—C22—C27—C26 0.3 (5)
C14—N1—C7—C8 −177.7 (3) C21—C22—C27—C26 179.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2198).

References

  1. Alexakis, A., Chauvin, A. S., Stouvenel, R., Vrancken, E., Mutti, S. & Mangeney, P. (2001). Tetrahedron: Asymmetry, 12, 1171–1178.
  2. Arjan, H., Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett.46, 1921–1925.
  3. Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Motevalli, M., Stenson, R. A. & Suggate, M. J. (2006). J. Chem. Crystallogr.36, 263–269.
  4. Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett.46, 3479–3484.
  5. Brethon, A., Moreau, J. J. E. & Man, M. W. C. (2004). Tetrahedron: Asymmetry, 15, 495–502.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  8. Evans, D. A., Mito, S. & Seidel, D. (2007). J. Am. Chem. Soc.129, 11583–11592. [DOI] [PubMed]
  9. Evans, D. A. & Seidel, D. (2005). J. Am. Chem. Soc.127, 9958–9959. [DOI] [PubMed]
  10. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  11. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  12. Jones, M. D. & Mahon, M. F. (2008). J. Organomet. Chem.693, 2377–2382.
  13. McArdle, P. (1999). XCAD National University of Ireland, Galway, Ireland.
  14. McArdle, P. & Daly, P. (1999). ABSCALC National University of Ireland, Galway, Ireland.
  15. Nguyen, Q. T. & Jeong, J. H. (2008a). Bull. Korean Chem. Soc.29, 483–486.
  16. Nguyen, Q. T. & Jeong, J. H. (2008b). Polyhedron, 27, 3227–3230.
  17. Roh, S. G., Yoon, J. U. & Jeong, J. H. (2004). Polyhedron, 23, 2063–2067.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett.43, 155–158.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014054/rk2198sup1.cif

e-66-0m565-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014054/rk2198Isup2.hkl

e-66-0m565-Isup2.hkl (241.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES