Abstract
In the title dinuclear complex, [Zn2I4(C6H8N6)2], two ZnII atoms are bridged by two 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) ligands, forming a centrosymmetric metallacycle. The coordination geometry of the ZnII ion is distorted tetrahedral with the coordination sphere formed by two N atoms from the triazole rings of two symmetry-related btre ligands and two iodide ligands.
Related literature
For the isostructural zinc complexes [Zn2(btre)2
X
4], where X = Cl, Br, see: Habit et al. (2009 ▶). For other triazole coordination compounds, see: Haasnoot (2000 ▶); Li et al. (2003 ▶); Zhang et al. (2007 ▶); Zhu et al. (2004 ▶).
Experimental
Crystal data
[Zn2I4(C6H8N6)2]
M r = 966.71
Monoclinic,
a = 20.241 (5) Å
b = 7.3847 (14) Å
c = 17.348 (4) Å
β = 97.375 (5)°
V = 2571.6 (9) Å3
Z = 4
Mo Kα radiation
μ = 6.69 mm−1
T = 293 K
0.59 × 0.21 × 0.20 mm
Data collection
Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (REQAB; Jacobson, 1998 ▶) T min = 0.110, T max = 0.348
11703 measured reflections
2339 independent reflections
2063 reflections with I > 2σ(I)
R int = 0.040
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.106
S = 1.07
2339 reflections
136 parameters
H-atom parameters constrained
Δρmax = 0.69 e Å−3
Δρmin = −1.31 e Å−3
Data collection: CrystalClear (Rigaku, 2000 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014121/gk2262sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014121/gk2262Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Zn1—N1 | 2.017 (5) |
| Zn1—N4i | 2.019 (5) |
| Zn1—I1 | 2.5479 (8) |
| Zn1—I2 | 2.5523 (9) |
| N1—Zn1—N4i | 103.68 (19) |
| N1—Zn1—I1 | 108.78 (14) |
| N4i—Zn1—I1 | 112.08 (14) |
| N1—Zn1—I2 | 113.03 (14) |
| N4i—Zn1—I2 | 107.90 (14) |
| I1—Zn1—I2 | 111.19 (3) |
Symmetry code: (i)
.
Acknowledgments
This work was supported by the Natural Science Foundation of China (No. 20671066), Jiangsu Province (No. BK2006049) and the Funds of the Key Laboratory of Organic Synthesis of Jiangsu Province, People’s Republic of China.
supplementary crystallographic information
Comment
A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized because of their magnetic properties and novel topologies (Haasnoot, 2000).
In our previous work, we synthesized several zincII complexes with 1,2-bis(1,2,4-triazol-1-yl)ethane (bte; Li et al., 2003; Zhang et al., 2007; Zhu et al., 2004). 1,2-Bis(1,2,4-triazol-4-yl)ethane (btre) is an isomer of 1,2-bis(1,2,4-triazol-1-yl)ethane. In the present work, we report here the preparation and crystal structure of a dimeric zincII complex, namely, [Zn(btre)I2]2 (I).
The crystal structure of (I) is built up from a neutral dimeric metallacycle. The dimer is centrosymmetric. As shown in Fig.1, in each dimer, two zincII centres are connected by two btre lignads resulting in a discrete Zn2(btre)2 18-membered binuclear metallacycle.
Each zincII centre is four-coordinated by two N atoms of btre ligands and two I lignads (Table 1), forming a distorted tetrahedral geometry. Each btre exhibits a gauche conformation in (I). The N3—C5—C6—N6 torsion angle is 63.8 (7)°. The dihedral angle between the two triazole rings is 45.6 (2)°. The Zn···Zn separation via the bridging btre ligand is 7.755 (2) Å in (I), compared with the corresponding values of 7.8750 (2) Å in [Zn(btre)Cl2]2 and 7.7980 (5) Å in [Zn(btre)Br2]2 (Habit et al., 2009).
Experimental
10 ml of aqueous solution of ZnI2 (1 mmol) was added to a tube, and 10 ml of MeOH solution of 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) (1.0 mmol) was carefully added above the aqueous solution. Colourless crystals were obtained after about two weeks. Anal. Calcd. for C12H16I4N12Zn2: C, 14.91; H, 1.67; N, 17.39%. Found: C, 14.82; H, 1.56; N, 17.31%.
Refinement
H atom were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole) and 0.97Å (ethane), and with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
A dimeric structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level (symmetry code for atoms A: -x+1/2, -y+1/2, -z+1).
Fig. 2.
Crystal packing of the title compound viewed along the [010] direction.
Crystal data
| [Zn2I4(C6H8N6)2] | F(000) = 1776 |
| Mr = 966.71 | Dx = 2.497 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71070 Å |
| Hall symbol: -c 2yc | Cell parameters from 4578 reflections |
| a = 20.241 (5) Å | θ = 3.1–25.4° |
| b = 7.3847 (14) Å | µ = 6.69 mm−1 |
| c = 17.348 (4) Å | T = 293 K |
| β = 97.375 (5)° | Block, yellow |
| V = 2571.6 (9) Å3 | 0.59 × 0.21 × 0.20 mm |
| Z = 4 |
Data collection
| Rigaku Mercury CCD diffractometer | 2339 independent reflections |
| Radiation source: fine-focus sealed tube | 2063 reflections with I > 2σ(I) |
| graphite | Rint = 0.040 |
| ω scans | θmax = 25.3°, θmin = 3.1° |
| Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −23→24 |
| Tmin = 0.110, Tmax = 0.348 | k = −8→8 |
| 11703 measured reflections | l = −20→20 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.106 | H-atom parameters constrained |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0585P)2 + 4.1632P] where P = (Fo2 + 2Fc2)/3 |
| 2339 reflections | (Δ/σ)max = 0.001 |
| 136 parameters | Δρmax = 0.69 e Å−3 |
| 0 restraints | Δρmin = −1.31 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Zn1 | 0.13008 (3) | −0.08434 (9) | 0.58428 (4) | 0.0339 (2) | |
| I1 | 0.05228 (2) | 0.08983 (6) | 0.66190 (3) | 0.04764 (18) | |
| I2 | 0.09753 (2) | −0.41797 (6) | 0.57188 (3) | 0.05286 (19) | |
| N1 | 0.1311 (2) | 0.0385 (7) | 0.4806 (3) | 0.0372 (11) | |
| N2 | 0.1752 (3) | −0.0096 (9) | 0.4306 (3) | 0.0571 (15) | |
| N3 | 0.1084 (2) | 0.2012 (7) | 0.3770 (2) | 0.0340 (10) | |
| N4 | 0.2741 (2) | 0.5707 (6) | 0.3664 (3) | 0.0375 (11) | |
| N5 | 0.2601 (3) | 0.6027 (9) | 0.2874 (3) | 0.0580 (17) | |
| N6 | 0.1672 (2) | 0.5550 (7) | 0.3363 (3) | 0.0365 (11) | |
| C1 | 0.0918 (3) | 0.1627 (8) | 0.4480 (3) | 0.0361 (13) | |
| H1A | 0.0573 | 0.2171 | 0.4702 | 0.043* | |
| C2 | 0.1604 (4) | 0.0924 (10) | 0.3697 (4) | 0.0543 (19) | |
| H2A | 0.1831 | 0.0903 | 0.3264 | 0.065* | |
| C3 | 0.2178 (3) | 0.5456 (8) | 0.3934 (3) | 0.0389 (14) | |
| H3A | 0.2135 | 0.5241 | 0.4453 | 0.047* | |
| C4 | 0.1964 (4) | 0.5905 (10) | 0.2722 (4) | 0.057 (2) | |
| H4A | 0.1732 | 0.6044 | 0.2227 | 0.069* | |
| C5 | 0.0761 (3) | 0.3322 (10) | 0.3219 (3) | 0.0466 (16) | |
| H5A | 0.0282 | 0.3217 | 0.3209 | 0.056* | |
| H5B | 0.0867 | 0.3030 | 0.2704 | 0.056* | |
| C6 | 0.0963 (3) | 0.5244 (9) | 0.3406 (4) | 0.0441 (15) | |
| H6A | 0.0702 | 0.6049 | 0.3045 | 0.053* | |
| H6B | 0.0867 | 0.5535 | 0.3926 | 0.053* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Zn1 | 0.0336 (4) | 0.0388 (4) | 0.0292 (4) | −0.0052 (3) | 0.0042 (3) | 0.0017 (3) |
| I1 | 0.0509 (3) | 0.0455 (3) | 0.0502 (3) | −0.00351 (19) | 0.0210 (2) | −0.00607 (18) |
| I2 | 0.0723 (4) | 0.0381 (3) | 0.0476 (3) | −0.01108 (19) | 0.0055 (2) | −0.00284 (17) |
| N1 | 0.042 (3) | 0.040 (3) | 0.031 (2) | −0.002 (2) | 0.011 (2) | 0.002 (2) |
| N2 | 0.057 (4) | 0.071 (4) | 0.047 (3) | 0.020 (3) | 0.020 (3) | 0.015 (3) |
| N3 | 0.033 (2) | 0.040 (3) | 0.028 (2) | −0.005 (2) | 0.0016 (19) | 0.004 (2) |
| N4 | 0.035 (3) | 0.047 (3) | 0.030 (2) | −0.004 (2) | 0.004 (2) | 0.004 (2) |
| N5 | 0.042 (3) | 0.102 (5) | 0.029 (3) | −0.005 (3) | 0.002 (2) | 0.010 (3) |
| N6 | 0.031 (2) | 0.046 (3) | 0.032 (2) | −0.002 (2) | 0.002 (2) | 0.008 (2) |
| C1 | 0.037 (3) | 0.038 (3) | 0.035 (3) | −0.004 (3) | 0.010 (3) | 0.001 (3) |
| C2 | 0.066 (4) | 0.067 (5) | 0.034 (3) | 0.008 (4) | 0.019 (3) | 0.010 (3) |
| C3 | 0.041 (3) | 0.044 (3) | 0.032 (3) | −0.004 (3) | 0.007 (3) | 0.001 (3) |
| C4 | 0.050 (4) | 0.089 (6) | 0.031 (3) | −0.007 (4) | −0.001 (3) | 0.017 (3) |
| C5 | 0.037 (3) | 0.068 (4) | 0.032 (3) | −0.012 (3) | −0.007 (3) | 0.009 (3) |
| C6 | 0.034 (3) | 0.058 (4) | 0.040 (3) | 0.007 (3) | 0.003 (3) | 0.016 (3) |
Geometric parameters (Å, °)
| Zn1—N1 | 2.017 (5) | N5—C4 | 1.285 (9) |
| Zn1—N4i | 2.019 (5) | N6—C3 | 1.333 (7) |
| Zn1—I1 | 2.5479 (8) | N6—C4 | 1.351 (8) |
| Zn1—I2 | 2.5523 (9) | N6—C6 | 1.463 (7) |
| N1—C1 | 1.296 (7) | C1—H1A | 0.9300 |
| N1—N2 | 1.369 (7) | C2—H2A | 0.9300 |
| N2—C2 | 1.301 (8) | C3—H3A | 0.9300 |
| N3—C2 | 1.342 (8) | C4—H4A | 0.9300 |
| N3—C1 | 1.350 (7) | C5—C6 | 1.502 (9) |
| N3—C5 | 1.455 (8) | C5—H5A | 0.9700 |
| N4—C3 | 1.301 (7) | C5—H5B | 0.9700 |
| N4—N5 | 1.384 (7) | C6—H6A | 0.9700 |
| N4—Zn1i | 2.019 (5) | C6—H6B | 0.9700 |
| N1—Zn1—N4i | 103.68 (19) | N3—C1—H1A | 125.2 |
| N1—Zn1—I1 | 108.78 (14) | N2—C2—N3 | 111.8 (5) |
| N4i—Zn1—I1 | 112.08 (14) | N2—C2—H2A | 124.1 |
| N1—Zn1—I2 | 113.03 (14) | N3—C2—H2A | 124.1 |
| N4i—Zn1—I2 | 107.90 (14) | N4—C3—N6 | 110.5 (5) |
| I1—Zn1—I2 | 111.19 (3) | N4—C3—H3A | 124.7 |
| C1—N1—N2 | 108.7 (5) | N6—C3—H3A | 124.7 |
| C1—N1—Zn1 | 129.1 (4) | N5—C4—N6 | 112.3 (6) |
| N2—N1—Zn1 | 122.1 (4) | N5—C4—H4A | 123.9 |
| C2—N2—N1 | 105.3 (5) | N6—C4—H4A | 123.9 |
| C2—N3—C1 | 104.5 (5) | N3—C5—C6 | 113.5 (5) |
| C2—N3—C5 | 128.9 (5) | N3—C5—H5A | 108.9 |
| C1—N3—C5 | 126.6 (5) | C6—C5—H5A | 108.9 |
| C3—N4—N5 | 107.7 (5) | N3—C5—H5B | 108.9 |
| C3—N4—Zn1i | 133.9 (4) | C6—C5—H5B | 108.9 |
| N5—N4—Zn1i | 118.4 (4) | H5A—C5—H5B | 107.7 |
| C4—N5—N4 | 105.3 (5) | N6—C6—C5 | 112.1 (5) |
| C3—N6—C4 | 104.2 (5) | N6—C6—H6A | 109.2 |
| C3—N6—C6 | 128.2 (5) | C5—C6—H6A | 109.2 |
| C4—N6—C6 | 127.5 (5) | N6—C6—H6B | 109.2 |
| N1—C1—N3 | 109.6 (5) | C5—C6—H6B | 109.2 |
| N1—C1—H1A | 125.2 | H6A—C6—H6B | 107.9 |
| N4i—Zn1—N1—C1 | −131.9 (5) | C1—N3—C2—N2 | 0.9 (8) |
| I1—Zn1—N1—C1 | −12.5 (5) | C5—N3—C2—N2 | −178.9 (6) |
| I2—Zn1—N1—C1 | 111.5 (5) | N5—N4—C3—N6 | 1.5 (7) |
| N4i—Zn1—N1—N2 | 51.5 (5) | Zn1i—N4—C3—N6 | 177.6 (4) |
| I1—Zn1—N1—N2 | 171.0 (4) | C4—N6—C3—N4 | −0.9 (7) |
| I2—Zn1—N1—N2 | −65.0 (5) | C6—N6—C3—N4 | 176.2 (6) |
| C1—N1—N2—C2 | 1.0 (8) | N4—N5—C4—N6 | 0.9 (8) |
| Zn1—N1—N2—C2 | 178.2 (5) | C3—N6—C4—N5 | −0.1 (8) |
| C3—N4—N5—C4 | −1.4 (7) | C6—N6—C4—N5 | −177.1 (6) |
| Zn1i—N4—N5—C4 | −178.3 (5) | C2—N3—C5—C6 | −101.4 (8) |
| N2—N1—C1—N3 | −0.4 (7) | C1—N3—C5—C6 | 78.8 (7) |
| Zn1—N1—C1—N3 | −177.4 (4) | C3—N6—C6—C5 | −93.3 (7) |
| C2—N3—C1—N1 | −0.3 (7) | C4—N6—C6—C5 | 83.1 (8) |
| C5—N3—C1—N1 | 179.6 (5) | N3—C5—C6—N6 | 63.8 (7) |
| N1—N2—C2—N3 | −1.2 (9) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2262).
References
- Haasnoot, J. G. (2000). Coord. Chem. Rev.200–202, 131–185.
- Habit, H. A., Hoffmann, A., Hoppe, H. A., Steinfeld, G. & Janiak, C. (2009). Inorg. Chem.48, 2166–2180. [DOI] [PubMed]
- Jacobson, R. (1998). REQAB Private communication to the Rigaku Corporation, Tokyo, Japan.
- Li, B.-L., Li, B.-Z., Zhu, X., Zhu, L.-M. & Zhang, Y. (2003). Acta Cryst. C59, m350–m351. [DOI] [PubMed]
- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. & Zhang, Y. (2007). Acta Cryst. C63, m120–m122. [DOI] [PubMed]
- Zhu, X., Li, B.-Z., Zhou, J.-H., Li, B.-L. & Zhang, Y. (2004). Acta Cryst. C60, m191–m193. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014121/gk2262sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014121/gk2262Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


