Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):o1048. doi: 10.1107/S1600536810012419

N′-(2,4-Dichloro­benzyl­idene)-2-hydr­oxy-3-methyl­benzohydrazide

You-Yue Han a,*, Qiu-Rong Zhao a
PMCID: PMC2979063  PMID: 21579108

Abstract

In the title compound, C15H12Cl2N2O2, the dihedral angle between the two benzene rings is 6.3 (2)°. The mol­ecule adopts an E configuration with respect to the C=N bond. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal structure, the mol­ecules are linked through inter­molecular N—H⋯O and C—H⋯O hydrogen bonds to form chains running along [101].

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1048-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O2

  • M r = 323.17

  • Monoclinic, Inline graphic

  • a = 7.137 (1) Å

  • b = 28.146 (2) Å

  • c = 8.130 (1) Å

  • β = 115.098 (1)°

  • V = 1478.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.917, T max = 0.928

  • 8543 measured reflections

  • 3211 independent reflections

  • 2439 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.130

  • S = 1.08

  • 3211 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012419/ci5073sup1.cif

e-66-o1048-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012419/ci5073Isup2.hkl

e-66-o1048-Isup2.hkl (157.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.96 2.6689 (19) 144
N2—H2⋯O2i 0.90 (1) 2.13 (1) 2.9905 (19) 161 (2)
C7—H7⋯O2i 0.93 2.45 3.264 (2) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Applied Chemistry Key Subject of Anhui Province (grant No. 200802187 C). The authors thank Mr Gang Wu of Chuzhou University for his help with the crystal growth.

supplementary crystallographic information

Comment

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 6.3 (2)°. The molecule adopts an E configuration with respect to the C═N bond. There is an intramolecular O—H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those observed in related structures (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) to form chains running along the [101] (Fig. 2).

Experimental

A mixture of 2,4-dichlorobenzaldehyde (0.174 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in methanol (50 ml) was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, single crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H12Cl2N2O2 F(000) = 664
Mr = 323.17 Dx = 1.451 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3312 reflections
a = 7.137 (1) Å θ = 2.7–26.7°
b = 28.146 (2) Å µ = 0.44 mm1
c = 8.130 (1) Å T = 298 K
β = 115.098 (1)° Block, colourless
V = 1478.9 (3) Å3 0.20 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 3211 independent reflections
Radiation source: fine-focus sealed tube 2439 reflections with I > 2σ(I)
graphite Rint = 0.080
ω scans θmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −7→9
Tmin = 0.917, Tmax = 0.928 k = −35→29
8543 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0199P] where P = (Fo2 + 2Fc2)/3
3211 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.20 e Å3
1 restraint Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.08171 (10) 0.072034 (18) 0.35298 (7) 0.0675 (2)
Cl2 0.28271 (12) 0.02969 (2) 1.04608 (9) 0.0896 (3)
N1 0.2165 (2) 0.21754 (5) 0.51447 (19) 0.0456 (3)
N2 0.1732 (2) 0.24652 (5) 0.36590 (19) 0.0461 (4)
O1 0.2584 (2) 0.39071 (4) 0.38436 (19) 0.0607 (4)
H1 0.3024 0.3723 0.4706 0.091*
O2 0.3710 (2) 0.30580 (5) 0.54178 (17) 0.0612 (4)
C1 0.1840 (3) 0.13994 (6) 0.6149 (2) 0.0418 (4)
C2 0.1588 (3) 0.09173 (6) 0.5740 (2) 0.0456 (4)
C3 0.1937 (3) 0.05770 (7) 0.7075 (3) 0.0532 (5)
H3 0.1815 0.0255 0.6790 0.064*
C4 0.2466 (3) 0.07250 (7) 0.8822 (3) 0.0564 (5)
C5 0.2684 (3) 0.11985 (7) 0.9281 (3) 0.0571 (5)
H5 0.3025 0.1293 1.0470 0.068*
C6 0.2390 (3) 0.15312 (7) 0.7953 (2) 0.0507 (4)
H6 0.2562 0.1851 0.8263 0.061*
C7 0.1512 (3) 0.17531 (6) 0.4737 (2) 0.0447 (4)
H7 0.0814 0.1667 0.3522 0.054*
C8 0.2616 (3) 0.28989 (6) 0.3889 (2) 0.0440 (4)
C9 0.2212 (2) 0.31687 (6) 0.2219 (2) 0.0412 (4)
C10 0.2190 (3) 0.36649 (6) 0.2284 (2) 0.0458 (4)
C11 0.1737 (3) 0.39357 (7) 0.0725 (3) 0.0530 (5)
C12 0.1414 (3) 0.36996 (7) −0.0855 (3) 0.0598 (5)
H12 0.1124 0.3876 −0.1902 0.072*
C13 0.1503 (3) 0.32088 (8) −0.0946 (3) 0.0595 (5)
H13 0.1306 0.3060 −0.2028 0.071*
C14 0.1888 (3) 0.29443 (6) 0.0593 (2) 0.0487 (4)
H14 0.1932 0.2615 0.0544 0.058*
C15 0.1625 (4) 0.44689 (7) 0.0806 (4) 0.0719 (6)
H15A 0.1534 0.4603 −0.0312 0.108*
H15B 0.2845 0.4586 0.1797 0.108*
H15C 0.0425 0.4558 0.0983 0.108*
H2 0.077 (3) 0.2377 (8) 0.2565 (18) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1002 (5) 0.0532 (3) 0.0537 (3) −0.0007 (3) 0.0369 (3) −0.0057 (2)
Cl2 0.1246 (6) 0.0848 (5) 0.0756 (4) 0.0201 (4) 0.0580 (4) 0.0368 (3)
N1 0.0454 (8) 0.0445 (8) 0.0405 (7) −0.0003 (6) 0.0122 (6) 0.0052 (6)
N2 0.0480 (9) 0.0424 (8) 0.0379 (7) −0.0048 (6) 0.0083 (6) 0.0040 (6)
O1 0.0731 (10) 0.0438 (7) 0.0648 (9) −0.0015 (6) 0.0290 (8) −0.0077 (6)
O2 0.0725 (9) 0.0499 (8) 0.0422 (7) −0.0099 (6) 0.0060 (7) −0.0029 (6)
C1 0.0380 (9) 0.0467 (9) 0.0401 (9) 0.0001 (7) 0.0158 (7) 0.0036 (7)
C2 0.0472 (10) 0.0483 (10) 0.0472 (9) 0.0026 (7) 0.0256 (8) 0.0032 (7)
C3 0.0599 (12) 0.0453 (10) 0.0631 (12) 0.0056 (8) 0.0344 (10) 0.0104 (9)
C4 0.0585 (12) 0.0638 (13) 0.0545 (11) 0.0116 (9) 0.0312 (10) 0.0189 (9)
C5 0.0597 (12) 0.0695 (13) 0.0416 (9) 0.0060 (9) 0.0211 (9) 0.0056 (9)
C6 0.0516 (11) 0.0515 (11) 0.0451 (10) −0.0009 (8) 0.0168 (9) 0.0011 (8)
C7 0.0437 (10) 0.0457 (10) 0.0409 (9) −0.0019 (7) 0.0143 (8) 0.0015 (7)
C8 0.0411 (9) 0.0408 (9) 0.0436 (9) 0.0018 (7) 0.0118 (8) 0.0015 (7)
C9 0.0346 (8) 0.0412 (9) 0.0425 (9) −0.0015 (6) 0.0111 (7) 0.0013 (7)
C10 0.0369 (9) 0.0419 (9) 0.0550 (11) 0.0006 (7) 0.0159 (8) 0.0032 (8)
C11 0.0398 (10) 0.0487 (10) 0.0666 (12) 0.0021 (7) 0.0188 (9) 0.0103 (9)
C12 0.0507 (12) 0.0641 (13) 0.0593 (12) −0.0033 (9) 0.0181 (10) 0.0198 (10)
C13 0.0579 (12) 0.0746 (14) 0.0435 (10) −0.0112 (10) 0.0191 (9) −0.0023 (9)
C14 0.0467 (10) 0.0469 (10) 0.0489 (10) −0.0041 (8) 0.0167 (8) −0.0011 (8)
C15 0.0662 (14) 0.0479 (12) 0.0980 (17) 0.0069 (9) 0.0313 (13) 0.0206 (11)

Geometric parameters (Å, °)

Cl1—C2 1.7319 (18) C5—H5 0.93
Cl2—C4 1.7323 (18) C6—H6 0.93
N1—C7 1.268 (2) C7—H7 0.93
N1—N2 1.3795 (19) C8—C9 1.474 (2)
N2—C8 1.350 (2) C9—C14 1.393 (2)
N2—H2 0.898 (10) C9—C10 1.398 (2)
O1—C10 1.360 (2) C10—C11 1.394 (3)
O1—H1 0.82 C11—C12 1.376 (3)
O2—C8 1.2376 (19) C11—C15 1.506 (3)
C1—C2 1.391 (3) C12—C13 1.386 (3)
C1—C6 1.398 (2) C12—H12 0.93
C1—C7 1.461 (2) C13—C14 1.379 (3)
C2—C3 1.389 (2) C13—H13 0.93
C3—C4 1.371 (3) C14—H14 0.93
C3—H3 0.93 C15—H15A 0.96
C4—C5 1.375 (3) C15—H15B 0.96
C5—C6 1.376 (3) C15—H15C 0.96
C7—N1—N2 113.86 (14) O2—C8—C9 122.17 (16)
C8—N2—N1 119.69 (14) N2—C8—C9 116.17 (14)
C8—N2—H2 120.2 (15) C14—C9—C10 119.26 (16)
N1—N2—H2 119.8 (15) C14—C9—C8 121.98 (16)
C10—O1—H1 109.5 C10—C9—C8 118.75 (15)
C2—C1—C6 117.41 (16) O1—C10—C11 116.74 (17)
C2—C1—C7 121.03 (15) O1—C10—C9 122.35 (16)
C6—C1—C7 121.56 (16) C11—C10—C9 120.91 (17)
C3—C2—C1 121.58 (17) C12—C11—C10 117.83 (17)
C3—C2—Cl1 117.58 (14) C12—C11—C15 122.08 (19)
C1—C2—Cl1 120.84 (13) C10—C11—C15 120.09 (19)
C4—C3—C2 118.68 (18) C11—C12—C13 122.54 (18)
C4—C3—H3 120.7 C11—C12—H12 118.7
C2—C3—H3 120.7 C13—C12—H12 118.7
C3—C4—C5 121.67 (17) C14—C13—C12 119.04 (19)
C3—C4—Cl2 118.12 (16) C14—C13—H13 120.5
C5—C4—Cl2 120.20 (15) C12—C13—H13 120.5
C4—C5—C6 119.02 (18) C13—C14—C9 120.33 (18)
C4—C5—H5 120.5 C13—C14—H14 119.8
C6—C5—H5 120.5 C9—C14—H14 119.8
C5—C6—C1 121.58 (17) C11—C15—H15A 109.5
C5—C6—H6 119.2 C11—C15—H15B 109.5
C1—C6—H6 119.2 H15A—C15—H15B 109.5
N1—C7—C1 120.98 (16) C11—C15—H15C 109.5
N1—C7—H7 119.5 H15A—C15—H15C 109.5
C1—C7—H7 119.5 H15B—C15—H15C 109.5
O2—C8—N2 121.66 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.82 1.96 2.6689 (19) 144
N2—H2···O2i 0.90 (1) 2.13 (1) 2.9905 (19) 161 (2)
C7—H7···O2i 0.93 2.45 3.264 (2) 146

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5073).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [DOI] [PubMed]
  5. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. [DOI] [PMC free article] [PubMed]
  6. Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650. [DOI] [PMC free article] [PubMed]
  7. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. [DOI] [PMC free article] [PubMed]
  8. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [DOI] [PMC free article] [PubMed]
  9. Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906. [DOI] [PMC free article] [PubMed]
  10. Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem.63, 688–699.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721. [DOI] [PMC free article] [PubMed]
  13. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012419/ci5073sup1.cif

e-66-o1048-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012419/ci5073Isup2.hkl

e-66-o1048-Isup2.hkl (157.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES