Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 2;66(Pt 5):o1014. doi: 10.1107/S1600536810011748

Diethyl 2-[phen­yl(pyrazol-1-yl)meth­yl]propane­dioate

Ihssan Meskini a, Maria Daoudi a, Jean-Claude Daran b, Hafid Zouihri c,*, Taibi Ben Hadda d
PMCID: PMC2979074  PMID: 21579078

Abstract

There are two independent mol­ecules in the asymmetric unit of the title compound, C17H20N2O4, which differ slightly in the orientation of the phenyl ring and carbonyl groups with respect to the pyrazole unit. In the first mol­ecule, the dihedral angle between the phenyl and pyrazole rings is 68.99 (13)° while the two carbonyl groups make a dihedral angle of 72.1 (4)°. The corresponding values in the second mol­ecule are 68.54 (14) and 71.5 (4)°, respectively.

Related literature

For related compounds displaying biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi et al. (2009a ,b ); Zeng et al. (2008a ,b ). For a related structures, see: Akkurt et al. (2007). For the synthetic procedure, see: Pommier & Neamati (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1014-scheme1.jpg

Experimental

Crystal data

  • C17H20N2O4

  • M r = 316.36

  • Monoclinic, Inline graphic

  • a = 19.6279 (8) Å

  • b = 8.1538 (3) Å

  • c = 21.6002 (9) Å

  • β = 104.675 (2)°

  • V = 3344.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.35 × 0.22 × 0.17 mm

Data collection

  • Bruker X8 APEXII CCD area-detector diffractometer

  • 34259 measured reflections

  • 6348 independent reflections

  • 4175 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.122

  • S = 1.06

  • 6346 reflections

  • 419 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011748/kj2142sup1.cif

e-66-o1014-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011748/kj2142Isup2.hkl

e-66-o1014-Isup2.hkl (310.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from Project PGR-UMP-BH-2005, the Centre National de Recherche Scientifique, CNRS (France) and the Centre National pour la Recherche Scientifique et Technique, CNRST (Morocco).

supplementary crystallographic information

Comment

The rational design of new HIV-1 Integrase (H-I) inhibitors, one validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H-I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme), leading to the formation of bimetallic complexes (Zeng et al., 2008a; Sechi et al., 2009a). Therefore several bimetallic metal complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process, in the last case involving biological oxygen transfer (Sechi et al., 2009b; Ramkumar et al., 2008). Another exciting example of the application of such polydentate ligands involves the synergic water activation, that occurs via the so-called remote metallic atoms. Such organometallic compounds are expected to promote or block the H-I activity [Zeng et al. (2008b)]. The examples given above clearly demonstrate that polydentate ligands are of special interest in the field of bioorganometallic chemistry [Patil et al. (2007)].

The structure of the title compound was established by 1H and 13C NMR and confirmed by its elemental analyses and single-crystal X-ray structure. Crystals of the title compound contain two molecules in the asymmetric unit. The difference between the molecules lies in the orientation of the phenyl and pyrazol rings and carbonyl planes in each molecule as shown in the fitting drawing (Fig. 2). Thus in the first molecule (C11 to C143) the dihedral angles between the phenyl and pyrazol rings is 68.99 (13)° and between the two carbonyl groups is 72.1 (4)°. Whereas in the second molecule (C21 to C243), equivalent angles have as values 68.54 (14)° and 71.5 (4)°, respectively. The conformational difference between the independent molecules, as shown in Fig. 2, can also be described by torsion angles: N11—C11···C131—C132 = 79.71 (15), C11—C12···O11O12 = 46.54 (9) and C11—C12···O13—O14 = 47.02 (9) in the first molecule. In the second molecule, the corresponding values are 54.31 (14), 41.77 (9) and 47.44 (9), respectively. The bond lengths and angles in the title compound (Fig. 1) are found to have normal values [Allen et al., 1987].

Experimental

To a solution of diethyl benzylpropanedioate (5 mmol) in water (25 ml) was added 1H-pyrazol (6 mmol) in the presence of acetic acid (0.1% mol). The mixture was stirred continuously at room temperature until the starting material was completely consumed. After removing the solvent, the crude products were dissolved in diethyl ether (2 x 40 ml) and washed with water until the pH became neutral. The organic solvent was dried with sodium sulphate and then evaporated. The residue was purified by recrystallization from a mixture ether/hexane (1:1) to give a white solid in 74% yield. Rf = 0.45 (ether/hexane: 1/1). Elemental analysis for C17H20N2O4: Calcd (Found): C 67.82 (67.79), H 5.89 (5.87), N (2.73 (2.72). The purity of the compound was checked by determining its melting point (87-89°C). Suitable single crystal of the title compound were obtained by recrystallization from ethanol.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.99 Å (methylene), 0.98 Å (methyl) and 1.00 Å (methine) with Uiso(H) = 1.2Ueq (aromatic, methine, methylene) and Uiso(H) = 1.5Ueq (methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View showing the fitting between the molecule 1 and the inverted molecule 2 from the asymmetric unit [PLATON (Spek, 2009)].

Crystal data

C17H20N2O4 F(000) = 1344
Mr = 316.36 Dx = 1.257 Mg m3
Monoclinic, P21/c Melting point: 360 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 19.6279 (8) Å Cell parameters from 3174 reflections
b = 8.1538 (3) Å θ = 2.1–25.2°
c = 21.6002 (9) Å µ = 0.09 mm1
β = 104.675 (2)° T = 173 K
V = 3344.2 (2) Å3 Block, colourless
Z = 8 0.35 × 0.22 × 0.17 mm

Data collection

Bruker X8 APEXII CCD area-detector diffractometer 4175 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.048
graphite θmax = 25.7°, θmin = 1.1°
φ and ω scans h = −23→23
34259 measured reflections k = −9→9
6348 independent reflections l = −26→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.7393P] where P = (Fo2 + 2Fc2)/3
6346 reflections (Δ/σ)max = 0.001
419 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal structure was confirmed by elemental analysis and 1H and 13 C-NMR.IR (KBr) ν cm-1 : 2896/2985 (CH), 1748 (CO), 1514/1595 (C=C), 1292/1308 (C—O), 1175, 1139, 1013, 866, 753, 440.1H-NMR (250 MHz, CDCl3) d (ppm): 7.30-7.46 (m, 4H, aromat, 3J = 8.35 Hz), 6.20 (t, 1H, C4Pz, 3J = 2 Hz), 7.5 (d, 2H, C3'H and C5HPz, 3J = 14.4 Hz), 5.85 (d, 1H, PhC3H, 3J = 11.36 Hz), 4.80 (d, 1H, C2H(CO2Et)2, 3J = 11.11 Hz), 3.95 (dq, 2 HAB, OCH2CH3,JAB= 14.30 Hz, 3J = 7.11 Hz), 4,12 (dq, 2HAB, CH2OCH3, JAB= 14.30 Hz, 3J = 7.11 Hz), 1.15 (t, 3H, OCH2CH3 , 3J = 7.13 Hz), 1.01 (t, 3H, OCH2CH3, 3J = 7.13 Hz).13C-NMR (250 MHz, CDCl3) δ (ppm): 166.37 (C=O), 166.61 (CO), 137.15 (Cquat, Ph), 128,62 (Ctert, 2Cmeta/arm, Ph), 129.76 (Ctert, 2Cortho/ arm, Ph), 139.56 (Ctert,' C5''Pz), 128.67 (Ctert, 'C3''Pz), 105.71 (Ctert, C4H, Pz), 61.87/ 61.76 (Csec, 2CH2, ester), 64.22 (Ctert, C3HPh), 57.33 (Ctert, C2H(CO2Et)2), 13.87 (C, OCH2CH3, ester), 13.69 (C, OCH2CH3, ester).MS (IE) Calcd for [M]+ C17H20N2O4: 316.35, [M+H]+. = 317, [M - CH(CO2Et)2]+. = 157 (100%).Elemental analysis for C17H20N2O4 Calcd (Found): C 64.54 (64.37), H 6.37 (6.34), N 8.86 (8.84).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.97782 (9) 0.4587 (2) 0.14742 (9) 0.0288 (4)
H11 0.9766 0.4313 0.1922 0.035*
C12 0.94763 (9) 0.3117 (2) 0.10526 (9) 0.0285 (4)
H12 0.9474 0.3357 0.0598 0.034*
C136 1.08085 (10) 0.4753 (2) 0.09490 (10) 0.0355 (5)
H136 1.0511 0.4353 0.0561 0.043*
C131 1.05405 (9) 0.4968 (2) 0.14811 (9) 0.0293 (4)
C132 1.09818 (10) 0.5576 (3) 0.20416 (10) 0.0377 (5)
H132 1.0805 0.5740 0.2408 0.045*
C133 1.16781 (11) 0.5945 (3) 0.20699 (11) 0.0462 (6)
H133 1.1975 0.6370 0.2454 0.055*
C135 1.15052 (11) 0.5120 (3) 0.09818 (11) 0.0432 (5)
H135 1.1683 0.4972 0.0616 0.052*
C134 1.19419 (11) 0.5697 (3) 0.15430 (11) 0.0478 (6)
H134 1.2423 0.5924 0.1567 0.057*
C18 0.99255 (9) 0.1608 (2) 0.12819 (9) 0.0302 (4)
C15 0.87274 (9) 0.2760 (2) 0.10988 (9) 0.0301 (4)
C16 0.75841 (10) 0.2018 (3) 0.05069 (10) 0.0478 (6)
H16A 0.7385 0.2926 0.0710 0.057*
H16B 0.7540 0.0989 0.0737 0.057*
C19 1.04535 (12) −0.0718 (3) 0.09243 (11) 0.0462 (6)
H19A 1.0208 −0.1668 0.0681 0.055*
H19B 1.0561 −0.0982 0.1386 0.055*
C20 1.11176 (11) −0.0376 (3) 0.07335 (11) 0.0484 (6)
H20A 1.1007 −0.0113 0.0276 0.073*
H20B 1.1422 −0.1346 0.0818 0.073*
H20C 1.1361 0.0555 0.0981 0.073*
C17 0.72063 (12) 0.1870 (5) −0.01707 (12) 0.0850 (11)
H17A 0.7247 0.2901 −0.0392 0.127*
H17B 0.6708 0.1635 −0.0205 0.127*
H17C 0.7412 0.0976 −0.0367 0.127*
O13 1.01617 (7) 0.12639 (17) 0.18357 (7) 0.0448 (4)
O14 1.00073 (7) 0.07390 (16) 0.07883 (6) 0.0390 (3)
O12 0.83217 (6) 0.23431 (18) 0.05337 (6) 0.0388 (3)
O11 0.85427 (7) 0.28256 (18) 0.15869 (6) 0.0420 (4)
N11 0.93182 (8) 0.60116 (18) 0.12721 (7) 0.0295 (4)
C21 0.47116 (9) 0.8377 (2) 0.40329 (9) 0.0294 (4)
H21 0.4728 0.8760 0.4476 0.035*
C22 0.43696 (9) 0.9732 (2) 0.35641 (9) 0.0282 (4)
H22 0.4362 0.9388 0.3118 0.034*
C236 0.56098 (10) 0.7580 (2) 0.34270 (9) 0.0357 (5)
H236 0.5236 0.7390 0.3058 0.043*
C231 0.54615 (9) 0.8070 (2) 0.39927 (8) 0.0286 (4)
C235 0.62987 (11) 0.7365 (3) 0.33975 (10) 0.0422 (5)
H235 0.6397 0.7029 0.3008 0.051*
C232 0.60142 (10) 0.8345 (3) 0.45220 (10) 0.0435 (5)
H232 0.5920 0.8683 0.4913 0.052*
C233 0.67022 (11) 0.8134 (3) 0.44898 (12) 0.0556 (6)
H233 0.7077 0.8335 0.4857 0.067*
C234 0.68458 (11) 0.7637 (3) 0.39325 (11) 0.0504 (6)
H234 0.7319 0.7480 0.3913 0.060*
O22 0.32221 (6) 1.05521 (18) 0.30375 (6) 0.0379 (3)
O23 0.50629 (7) 1.17430 (17) 0.42706 (6) 0.0383 (3)
O24 0.48859 (7) 1.20201 (17) 0.32046 (6) 0.0374 (3)
O21 0.34248 (7) 1.00089 (19) 0.40842 (6) 0.0428 (4)
C25 0.36234 (10) 1.0097 (2) 0.36044 (9) 0.0303 (4)
C26 0.24856 (10) 1.0901 (3) 0.30130 (10) 0.0483 (6)
H26A 0.2450 1.1902 0.3262 0.058*
H26B 0.2274 0.9975 0.3195 0.058*
C27 0.21148 (12) 1.1144 (4) 0.23293 (11) 0.0702 (8)
H27A 0.2300 1.2124 0.2166 0.105*
H27B 0.1609 1.1282 0.2289 0.105*
H27C 0.2190 1.0184 0.2081 0.105*
C28 0.48128 (9) 1.1279 (2) 0.37332 (9) 0.0285 (4)
C29 0.53627 (11) 1.3421 (3) 0.32954 (10) 0.0439 (5)
H29A 0.5384 1.3949 0.3713 0.053*
H29B 0.5190 1.4239 0.2953 0.053*
C30 0.60821 (11) 1.2832 (3) 0.32758 (11) 0.0526 (6)
H30A 0.6245 1.2005 0.3610 0.079*
H30B 0.6410 1.3760 0.3349 0.079*
H30C 0.6060 1.2348 0.2856 0.079*
N21 0.42781 (8) 0.68893 (19) 0.39088 (7) 0.0323 (4)
N12 0.90130 (9) 0.6301 (2) 0.06472 (8) 0.0402 (4)
N22 0.39520 (10) 0.6437 (2) 0.33069 (8) 0.0469 (5)
C141 0.91609 (10) 0.7177 (2) 0.16551 (10) 0.0350 (5)
H141 0.9323 0.7224 0.2108 0.042*
C241 0.41790 (11) 0.5804 (3) 0.43464 (11) 0.0412 (5)
H241 0.4364 0.5869 0.4797 0.049*
C142 0.87256 (10) 0.8278 (3) 0.12717 (10) 0.0394 (5)
H142 0.8520 0.9236 0.1398 0.047*
C143 0.86510 (10) 0.7683 (3) 0.06560 (11) 0.0431 (5)
H143 0.8374 0.8202 0.0283 0.052*
C242 0.37550 (11) 0.4572 (3) 0.40125 (12) 0.0480 (6)
H242 0.3586 0.3625 0.4183 0.058*
C243 0.36321 (12) 0.5025 (3) 0.33775 (12) 0.0487 (6)
H243 0.3354 0.4407 0.3032 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0257 (10) 0.0313 (10) 0.0280 (10) 0.0028 (8) 0.0042 (8) 0.0022 (8)
C12 0.0242 (10) 0.0341 (11) 0.0268 (10) 0.0018 (8) 0.0056 (7) 0.0009 (8)
C136 0.0305 (11) 0.0385 (12) 0.0368 (12) −0.0014 (9) 0.0072 (9) −0.0019 (9)
C131 0.0255 (10) 0.0282 (10) 0.0334 (11) 0.0029 (8) 0.0059 (8) 0.0019 (8)
C132 0.0334 (11) 0.0435 (12) 0.0346 (12) 0.0013 (9) 0.0054 (9) −0.0015 (9)
C133 0.0326 (12) 0.0541 (14) 0.0464 (14) −0.0053 (10) 0.0004 (10) −0.0046 (11)
C135 0.0360 (12) 0.0500 (13) 0.0466 (14) −0.0007 (10) 0.0158 (10) 0.0005 (11)
C134 0.0284 (11) 0.0575 (14) 0.0563 (15) −0.0015 (11) 0.0085 (10) 0.0011 (12)
C18 0.0222 (10) 0.0327 (11) 0.0344 (12) −0.0039 (8) 0.0046 (8) −0.0005 (9)
C15 0.0270 (10) 0.0297 (10) 0.0323 (11) 0.0049 (8) 0.0049 (8) 0.0015 (8)
C16 0.0221 (10) 0.0735 (16) 0.0472 (14) −0.0042 (11) 0.0076 (9) −0.0031 (12)
C19 0.0516 (14) 0.0332 (12) 0.0600 (15) 0.0111 (10) 0.0252 (11) 0.0019 (10)
C20 0.0404 (13) 0.0569 (15) 0.0483 (14) 0.0113 (11) 0.0121 (10) 0.0028 (11)
C17 0.0348 (14) 0.166 (3) 0.0485 (16) −0.0270 (17) 0.0003 (11) 0.0012 (18)
O13 0.0481 (9) 0.0433 (9) 0.0355 (9) 0.0110 (7) −0.0031 (7) −0.0010 (7)
O14 0.0448 (8) 0.0343 (8) 0.0409 (8) 0.0087 (7) 0.0165 (7) 0.0012 (6)
O12 0.0229 (7) 0.0566 (9) 0.0352 (8) −0.0039 (6) 0.0041 (6) −0.0065 (7)
O11 0.0327 (8) 0.0603 (10) 0.0335 (8) −0.0014 (7) 0.0094 (6) −0.0001 (7)
N11 0.0252 (8) 0.0317 (9) 0.0299 (9) 0.0017 (7) 0.0039 (7) 0.0021 (7)
C21 0.0289 (10) 0.0337 (10) 0.0245 (10) −0.0001 (8) 0.0049 (8) −0.0016 (8)
C22 0.0268 (10) 0.0341 (11) 0.0236 (10) 0.0003 (8) 0.0059 (8) 0.0000 (8)
C236 0.0344 (11) 0.0405 (11) 0.0310 (11) −0.0016 (9) 0.0062 (8) −0.0013 (9)
C231 0.0288 (10) 0.0288 (10) 0.0272 (10) 0.0001 (8) 0.0054 (8) 0.0012 (8)
C235 0.0415 (12) 0.0468 (13) 0.0411 (13) −0.0005 (10) 0.0158 (10) −0.0022 (10)
C232 0.0346 (12) 0.0580 (14) 0.0346 (12) 0.0077 (10) 0.0026 (9) −0.0046 (10)
C233 0.0344 (13) 0.0740 (17) 0.0524 (15) 0.0060 (12) 0.0000 (10) −0.0078 (13)
C234 0.0344 (12) 0.0590 (15) 0.0581 (16) 0.0001 (11) 0.0122 (11) −0.0034 (12)
O22 0.0224 (7) 0.0570 (9) 0.0334 (8) 0.0031 (6) 0.0054 (6) 0.0090 (7)
O23 0.0419 (8) 0.0419 (8) 0.0287 (8) −0.0041 (7) 0.0043 (6) −0.0038 (6)
O24 0.0402 (8) 0.0416 (8) 0.0302 (8) −0.0081 (6) 0.0082 (6) 0.0030 (6)
O21 0.0324 (8) 0.0674 (10) 0.0299 (8) −0.0005 (7) 0.0104 (6) −0.0010 (7)
C25 0.0277 (10) 0.0327 (11) 0.0285 (11) −0.0040 (8) 0.0037 (8) −0.0022 (8)
C26 0.0202 (10) 0.0755 (17) 0.0489 (14) 0.0020 (11) 0.0081 (9) 0.0093 (12)
C27 0.0298 (12) 0.125 (3) 0.0508 (15) 0.0155 (15) 0.0017 (11) 0.0139 (16)
C28 0.0241 (10) 0.0337 (11) 0.0272 (11) 0.0053 (8) 0.0055 (8) 0.0006 (8)
C29 0.0505 (13) 0.0409 (12) 0.0404 (13) −0.0152 (11) 0.0116 (10) 0.0010 (10)
C30 0.0447 (14) 0.0648 (16) 0.0469 (14) −0.0156 (12) 0.0088 (10) −0.0025 (12)
N21 0.0313 (9) 0.0345 (9) 0.0312 (9) −0.0002 (7) 0.0080 (7) 0.0012 (7)
N12 0.0418 (10) 0.0415 (10) 0.0327 (10) 0.0035 (8) 0.0011 (8) 0.0037 (8)
N22 0.0532 (12) 0.0470 (11) 0.0371 (11) −0.0123 (9) 0.0054 (8) −0.0015 (8)
C141 0.0332 (11) 0.0358 (11) 0.0373 (12) 0.0013 (9) 0.0111 (9) −0.0025 (9)
C241 0.0372 (12) 0.0429 (13) 0.0463 (13) 0.0082 (10) 0.0157 (10) 0.0133 (10)
C142 0.0320 (11) 0.0353 (11) 0.0520 (14) 0.0042 (9) 0.0127 (9) 0.0025 (10)
C143 0.0322 (11) 0.0430 (13) 0.0483 (14) 0.0029 (10) −0.0005 (9) 0.0134 (10)
C242 0.0415 (13) 0.0367 (13) 0.0712 (17) 0.0041 (10) 0.0245 (12) 0.0092 (11)
C243 0.0461 (13) 0.0410 (13) 0.0569 (16) −0.0096 (11) 0.0090 (11) −0.0048 (11)

Geometric parameters (Å, °)

C11—N11 1.468 (2) C22—H22 1.0000
C11—C131 1.525 (2) C236—C235 1.381 (3)
C11—C12 1.531 (3) C236—C231 1.385 (3)
C11—H11 1.0000 C236—H236 0.9500
C12—C18 1.522 (3) C231—C232 1.381 (3)
C12—C15 1.526 (2) C235—C234 1.382 (3)
C12—H12 1.0000 C235—H235 0.9500
C136—C135 1.384 (3) C232—C233 1.380 (3)
C136—C131 1.391 (3) C232—H232 0.9500
C136—H136 0.9500 C233—C234 1.365 (3)
C131—C132 1.390 (3) C233—H233 0.9500
C132—C133 1.386 (3) C234—H234 0.9500
C132—H132 0.9500 O22—C25 1.330 (2)
C133—C134 1.379 (3) O22—C26 1.461 (2)
C133—H133 0.9500 O23—C28 1.201 (2)
C135—C134 1.378 (3) O24—C28 1.331 (2)
C135—H135 0.9500 O24—C29 1.458 (2)
C134—H134 0.9500 O21—C25 1.198 (2)
C18—O13 1.202 (2) C26—C27 1.485 (3)
C18—O14 1.323 (2) C26—H26A 0.9900
C15—O11 1.200 (2) C26—H26B 0.9900
C15—O12 1.322 (2) C27—H27A 0.9800
C16—O12 1.459 (2) C27—H27B 0.9800
C16—C17 1.469 (3) C27—H27C 0.9800
C16—H16A 0.9900 C29—C30 1.502 (3)
C16—H16B 0.9900 C29—H29A 0.9900
C19—O14 1.461 (2) C29—H29B 0.9900
C19—C20 1.489 (3) C30—H30A 0.9800
C19—H19A 0.9900 C30—H30B 0.9800
C19—H19B 0.9900 C30—H30C 0.9800
C20—H20A 0.9800 N21—C241 1.345 (2)
C20—H20B 0.9800 N21—N22 1.347 (2)
C20—H20C 0.9800 N12—C143 1.335 (3)
C17—H17A 0.9800 N22—C243 1.339 (3)
C17—H17B 0.9800 C141—C142 1.365 (3)
C17—H17C 0.9800 C141—H141 0.9500
N11—C141 1.346 (2) C241—C242 1.385 (3)
N11—N12 1.352 (2) C241—H241 0.9500
C21—N21 1.467 (2) C142—C143 1.388 (3)
C21—C231 1.517 (2) C142—H142 0.9500
C21—C22 1.534 (2) C143—H143 0.9500
C21—H21 1.0000 C242—C243 1.382 (3)
C22—C25 1.519 (2) C242—H242 0.9500
C22—C28 1.524 (3) C243—H243 0.9500
N11—C11—C131 111.71 (15) C28—C22—H22 109.4
N11—C11—C12 109.05 (14) C21—C22—H22 109.4
C131—C11—C12 113.35 (15) C235—C236—C231 120.30 (18)
N11—C11—H11 107.5 C235—C236—H236 119.9
C131—C11—H11 107.5 C231—C236—H236 119.9
C12—C11—H11 107.5 C232—C231—C236 118.74 (18)
C18—C12—C15 108.20 (15) C232—C231—C21 119.74 (17)
C18—C12—C11 109.54 (14) C236—C231—C21 121.46 (16)
C15—C12—C11 110.16 (15) C236—C235—C234 120.2 (2)
C18—C12—H12 109.6 C236—C235—H235 119.9
C15—C12—H12 109.6 C234—C235—H235 119.9
C11—C12—H12 109.6 C233—C232—C231 120.8 (2)
C135—C136—C131 120.42 (19) C233—C232—H232 119.6
C135—C136—H136 119.8 C231—C232—H232 119.6
C131—C136—H136 119.8 C234—C233—C232 120.3 (2)
C132—C131—C136 118.83 (17) C234—C233—H233 119.9
C132—C131—C11 118.35 (17) C232—C233—H233 119.9
C136—C131—C11 122.82 (17) C233—C234—C235 119.6 (2)
C133—C132—C131 120.40 (19) C233—C234—H234 120.2
C133—C132—H132 119.8 C235—C234—H234 120.2
C131—C132—H132 119.8 C25—O22—C26 115.94 (14)
C134—C133—C132 120.3 (2) C28—O24—C29 116.43 (15)
C134—C133—H133 119.9 O21—C25—O22 124.50 (17)
C132—C133—H133 119.9 O21—C25—C22 124.60 (17)
C134—C135—C136 120.3 (2) O22—C25—C22 110.90 (15)
C134—C135—H135 119.8 O22—C26—C27 107.04 (16)
C136—C135—H135 119.8 O22—C26—H26A 110.3
C135—C134—C133 119.7 (2) C27—C26—H26A 110.3
C135—C134—H134 120.1 O22—C26—H26B 110.3
C133—C134—H134 120.1 C27—C26—H26B 110.3
O13—C18—O14 125.59 (18) H26A—C26—H26B 108.6
O13—C18—C12 123.95 (17) C26—C27—H27A 109.5
O14—C18—C12 110.45 (16) C26—C27—H27B 109.5
O11—C15—O12 125.28 (18) H27A—C27—H27B 109.5
O11—C15—C12 124.01 (17) C26—C27—H27C 109.5
O12—C15—C12 110.70 (16) H27A—C27—H27C 109.5
O12—C16—C17 107.46 (17) H27B—C27—H27C 109.5
O12—C16—H16A 110.2 O23—C28—O24 125.42 (18)
C17—C16—H16A 110.2 O23—C28—C22 124.14 (17)
O12—C16—H16B 110.2 O24—C28—C22 110.44 (15)
C17—C16—H16B 110.2 O24—C29—C30 108.77 (18)
H16A—C16—H16B 108.5 O24—C29—H29A 109.9
O14—C19—C20 108.32 (17) C30—C29—H29A 109.9
O14—C19—H19A 110.0 O24—C29—H29B 109.9
C20—C19—H19A 110.0 C30—C29—H29B 109.9
O14—C19—H19B 110.0 H29A—C29—H29B 108.3
C20—C19—H19B 110.0 C29—C30—H30A 109.5
H19A—C19—H19B 108.4 C29—C30—H30B 109.5
C19—C20—H20A 109.5 H30A—C30—H30B 109.5
C19—C20—H20B 109.5 C29—C30—H30C 109.5
H20A—C20—H20B 109.5 H30A—C30—H30C 109.5
C19—C20—H20C 109.5 H30B—C30—H30C 109.5
H20A—C20—H20C 109.5 C241—N21—N22 112.35 (17)
H20B—C20—H20C 109.5 C241—N21—C21 126.61 (17)
C16—C17—H17A 109.5 N22—N21—C21 120.98 (15)
C16—C17—H17B 109.5 C143—N12—N11 103.65 (16)
H17A—C17—H17B 109.5 C243—N22—N21 104.33 (17)
C16—C17—H17C 109.5 N11—C141—C142 107.29 (18)
H17A—C17—H17C 109.5 N11—C141—H141 126.4
H17B—C17—H17C 109.5 C142—C141—H141 126.4
C18—O14—C19 117.54 (16) N21—C241—C242 106.64 (19)
C15—O12—C16 116.30 (15) N21—C241—H241 126.7
C141—N11—N12 112.20 (16) C242—C241—H241 126.7
C141—N11—C11 126.54 (16) C141—C142—C143 104.45 (18)
N12—N11—C11 121.24 (15) C141—C142—H142 127.8
N21—C21—C231 112.30 (15) C143—C142—H142 127.8
N21—C21—C22 109.77 (14) N12—C143—C142 112.41 (18)
C231—C21—C22 110.48 (15) N12—C143—H143 123.8
N21—C21—H21 108.1 C142—C143—H143 123.8
C231—C21—H21 108.1 C243—C242—C241 104.70 (19)
C22—C21—H21 108.1 C243—C242—H242 127.7
C25—C22—C28 108.93 (15) C241—C242—H242 127.7
C25—C22—C21 111.74 (15) N22—C243—C242 112.0 (2)
C28—C22—C21 108.08 (15) N22—C243—H243 124.0
C25—C22—H22 109.4 C242—C243—H243 124.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2142).

References

  1. Akkurt, M., Yıldırım, S. Ö., Benjelloun, O. T., Larbi, N. B., Hadda, T. B. & Büyükgüngör, O. (2007). Acta Cryst. E63, o1656–o1657.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammmer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett.17, 6155–6159. [DOI] [PubMed]
  5. Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem.15, 1212–1228. [DOI] [PubMed]
  6. Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem.14, 3785–3792. [DOI] [PubMed]
  7. Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem.16, 8988–8998. [DOI] [PubMed]
  8. Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı‘, A., Al-Safi, R. I. & Neamati, N. (2009a). Antivir. Res.81, 267–276. [DOI] [PubMed]
  9. Sechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009b). Bioorg. Med. Chem.17, 2925–2935. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). publCIF. In preparation.
  13. Zeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008b). Bioorg. Med. Chem.16, 7777–7787. [DOI] [PubMed]
  14. Zeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008a). Bioorg. Med. Chem. Lett.18, 4521–4524. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011748/kj2142sup1.cif

e-66-o1014-sup1.cif (26.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011748/kj2142Isup2.hkl

e-66-o1014-Isup2.hkl (310.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES