Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1114. doi: 10.1107/S1600536810013619

1,3-Diphenyl-3,4-dihydro­benzo[b][1,6]naphthyridine

Werner Seebacher a, Robert Weis a, Robert Saf b, Ferdinand Belaj c,*
PMCID: PMC2979077  PMID: 21579165

Abstract

The title compound, C24H18N2, is the first structural example containing the 3,4-dihydro­benzo[b][1,6]naphthyridine fragment. It was synthesized from 2,4,6,8-tetra­phenyl-3,7-diaza­bicyclo­[3.3.1]nonan-9-one and was crystallized from a methanol–ethanol solution over two years as a racemate. The C=N double bond [1.2868 (15) Å] is bent significantly out of the plane of the aromatic bicyclic ring system [N—C—C—C = −157.63 (12)°] and out of the plane of the phenyl ring bonded at the 1-position [N—C—C—C = 41.15 (16)°].

Related literature

For the synthesis of 1,3-diphenyl-1,2,3,4-tetra­hydro­benzo[b][1,6]naphthyridine, see: Sivakumar (2000). For the synthesis of 2,4,6,8-tetra­phenyl-3,7-diaza­bicyclo­[3.3.1]nonan-9-one, see Ravindran et al. (1991). For the crystal structures of other naphthyridine derivatives, see: Sivakumar et al. (2003); Laavanya et al. (2001).graphic file with name e-66-o1114-scheme1.jpg

Experimental

Crystal data

  • C24H18N2

  • M r = 334.40

  • Monoclinic, Inline graphic

  • a = 10.2658 (4) Å

  • b = 10.8583 (5) Å

  • c = 16.1842 (7) Å

  • β = 107.909 (2)°

  • V = 1716.63 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.16 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.885, T max = 0.988

  • 20360 measured reflections

  • 3365 independent reflections

  • 3060 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.094

  • S = 1.02

  • 3365 reflections

  • 241 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013619/bt5246sup1.cif

e-66-o1114-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013619/bt5246Isup2.hkl

e-66-o1114-Isup2.hkl (165.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schmidt reaction of 2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one leads not to the expected bicyclic amide but to 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine. This compound crystallized in form of fine needles from ethanol. Our attempts to yield more compact crystals ended up in a new compound, 1,3-diphenyl-3,4-dihydrobenzo[b][1,6]naphthyridine, which was formed after a lomg term crystallization from a mixture of ethanol and methanol.

Experimental

Synthesis: 2,4,6,8-Tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one (1.34 g, 3.0 mmol) was dissolved in concentrated sulfuric acid (4 ml) under stirring and cooling and by use of an ultrasonic bath. This takes some time and the solution comes up to room temperature during this process. When the substance is completely dissolved, NaN3 (240 mg, 3,7 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. It was quenched with ice water, the yellow solution was extracted 3 times with ether to remove non basic impurities and then alkalized with 2 M NaOH solution. Then it was extracted 5 times with CH2Cl2, the organic layers were combined, washed 3 times with water, dried (Na2SO4), filtered and the solvent removed in vacuo. The residue was dissolved in benzene and filtered and the solvent removed in vacuo. Finally, the residue was dissolved in the minimum amount of hot ethanol and the solution left for crystallization for 2 days. The formed needles were sucked off and dried giving pure 1,3-diphenyl-1,2,3,4-tetrahydro-benzo[b][1,6]naphthyridine (330 mg, 0.98 mmol, 33 % yield). A part of it was dissolved in a mixture of methanol and ethanol and left for crystallization for 2 years. A few crystals of 1,3-diphenyl-3,4-dihydro-benzo[b][1,6]naphthyridine were obtained and subjected to the x-ray structure analysis.

HR—MS data [collected on a GCT-Premier spectrometer, Waters (EI, 70 eV)]: C24H18N2 requires [M]+ 334.1470; Found: 334.1452; C24H17N2 requires [M—H]+ 333.1392; Found: 333.1381.

Figures

Fig. 1.

Fig. 1.

ORTEP plot (Johnson, 1965) showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level, the H atoms are drawn with arbitrary radii. Selected distances: C1—N2 1.2868 (15) Å, C1—C101 1.4862 (16) Å, C1—C11 1.4936 (16) Å, N2—C3 1.4769 (14) Å, C3—C21 1.5128 (15) Å, C3—C4 1.5369 (15) Å, C4—C41 1.5073 (15) Å, C41—N5 1.3152 (14) Å, C41—C101 1.4293 (15) Å, N5—C51 1.3764 (14) Å.

Crystal data

C24H18N2 F(000) = 704
Mr = 334.40 Dx = 1.294 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9913 reflections
a = 10.2658 (4) Å θ = 2.7–26.0°
b = 10.8583 (5) Å µ = 0.08 mm1
c = 16.1842 (7) Å T = 100 K
β = 107.909 (2)° Block, yellow
V = 1716.63 (13) Å3 0.32 × 0.28 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3365 independent reflections
Radiation source: sealed tube 3060 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→12
Tmin = 0.885, Tmax = 0.988 k = −13→13
20360 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 Only H-atom displacement parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.7644P] where P = (Fo2 + 2Fc2)/3
3365 reflections (Δ/σ)max < 0.001
241 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atom of the tertiary C—H group was refined with an individual isotropic displacement parameter and all X—C—H angles equal at a C—H distance of 1.00 Å (AFIX 13 of SHELXL-97). The H atoms of the CH2 group were refined with common isotropic displacement parameters and idealized geometry with approximately tetrahedral angles and C—H distances of 0.99 Å (AFIX 23 of SHELXL-97). The H atoms of the phenyl rings as well as the atoma H6, H7, H8, and H9 were put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å and common isotropic displacement parameters were refined for the H atoms of the same ring (AFIX 43 of SHELXL-97). The H atom H10 was put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å but the individual isotropic displacement parameter was free to refine (AFIX 43 of SHELXL-97).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.60895 (12) 0.61918 (11) 0.71264 (8) 0.0221 (3)
N2 0.67352 (10) 0.72215 (9) 0.71977 (6) 0.0183 (2)
C3 0.61969 (11) 0.81335 (10) 0.64987 (7) 0.0162 (2)
H3 0.5364 0.8516 0.6588 0.016 (3)*
C4 0.57620 (11) 0.75231 (10) 0.55983 (7) 0.0167 (2)
H41 0.5341 0.8145 0.5148 0.022 (2)*
H42 0.6576 0.7180 0.5474 0.022 (2)*
C41 0.47489 (11) 0.65074 (10) 0.55714 (7) 0.0154 (2)
N5 0.37687 (9) 0.62770 (8) 0.48450 (6) 0.0160 (2)
C51 0.28123 (11) 0.53968 (10) 0.48615 (7) 0.0160 (2)
C6 0.17392 (11) 0.51425 (11) 0.40906 (7) 0.0186 (2)
H6 0.1692 0.5578 0.3573 0.0233 (17)*
C7 0.07669 (12) 0.42730 (11) 0.40843 (8) 0.0216 (3)
H7 0.0054 0.4109 0.3561 0.0233 (17)*
C8 0.08147 (12) 0.36181 (11) 0.48477 (8) 0.0220 (3)
H8 0.0143 0.3010 0.4833 0.0233 (17)*
C9 0.18252 (12) 0.38568 (11) 0.56076 (8) 0.0195 (2)
H9 0.1839 0.3429 0.6122 0.0233 (17)*
C91 0.28508 (11) 0.47405 (10) 0.56299 (7) 0.0168 (2)
C10 0.39474 (12) 0.49926 (10) 0.63871 (7) 0.0180 (2)
H10 0.4019 0.4564 0.6911 0.022 (3)*
C101 0.49068 (11) 0.58561 (10) 0.63637 (7) 0.0173 (2)
C11 0.66051 (11) 0.52633 (10) 0.78325 (7) 0.0173 (2)
C12 0.67192 (11) 0.40231 (11) 0.76360 (7) 0.0182 (2)
H12 0.6417 0.3754 0.7049 0.0262 (16)*
C13 0.72750 (11) 0.31812 (11) 0.82995 (8) 0.0217 (3)
H13 0.7371 0.2341 0.8164 0.0262 (16)*
C14 0.76892 (12) 0.35674 (12) 0.91590 (8) 0.0234 (3)
H14 0.8049 0.2988 0.9611 0.0262 (16)*
C15 0.75784 (12) 0.47979 (12) 0.93583 (8) 0.0236 (3)
H15 0.7867 0.5062 0.9946 0.0262 (16)*
C16 0.70445 (12) 0.56423 (11) 0.86972 (8) 0.0208 (3)
H16 0.6978 0.6486 0.8835 0.0262 (16)*
C21 0.72353 (11) 0.91467 (10) 0.65640 (7) 0.0154 (2)
C22 0.68122 (12) 1.03683 (11) 0.64243 (7) 0.0184 (2)
H22 0.5871 1.0563 0.6307 0.0257 (16)*
C23 0.77463 (13) 1.13070 (11) 0.64538 (7) 0.0210 (3)
H23 0.7441 1.2136 0.6357 0.0257 (16)*
C24 0.91240 (12) 1.10332 (11) 0.66241 (7) 0.0218 (3)
H24 0.9766 1.1672 0.6646 0.0257 (16)*
C25 0.95581 (12) 0.98180 (12) 0.67630 (8) 0.0220 (3)
H25 1.0500 0.9626 0.6876 0.0257 (16)*
C26 0.86247 (12) 0.88817 (11) 0.67380 (7) 0.0190 (2)
H26 0.8934 0.8055 0.6840 0.0257 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0239 (6) 0.0193 (6) 0.0199 (6) −0.0017 (5) 0.0022 (5) 0.0022 (5)
N2 0.0227 (5) 0.0168 (5) 0.0146 (5) −0.0015 (4) 0.0046 (4) 0.0017 (4)
C3 0.0175 (5) 0.0155 (5) 0.0157 (5) 0.0009 (4) 0.0051 (4) 0.0005 (4)
C4 0.0197 (5) 0.0160 (5) 0.0139 (5) −0.0009 (4) 0.0043 (4) 0.0014 (4)
C41 0.0166 (5) 0.0135 (5) 0.0165 (5) 0.0029 (4) 0.0059 (4) −0.0005 (4)
N5 0.0173 (5) 0.0144 (5) 0.0161 (5) 0.0017 (4) 0.0047 (4) −0.0008 (4)
C51 0.0170 (5) 0.0133 (5) 0.0182 (5) 0.0029 (4) 0.0061 (4) −0.0016 (4)
C6 0.0196 (6) 0.0181 (6) 0.0176 (6) 0.0033 (4) 0.0050 (4) −0.0012 (4)
C7 0.0176 (6) 0.0225 (6) 0.0226 (6) 0.0008 (5) 0.0031 (5) −0.0061 (5)
C8 0.0181 (6) 0.0198 (6) 0.0293 (6) −0.0038 (4) 0.0091 (5) −0.0038 (5)
C9 0.0205 (6) 0.0173 (6) 0.0227 (6) 0.0005 (4) 0.0098 (5) −0.0007 (4)
C91 0.0178 (5) 0.0140 (5) 0.0194 (6) 0.0022 (4) 0.0071 (4) −0.0017 (4)
C10 0.0218 (6) 0.0159 (5) 0.0169 (5) 0.0014 (4) 0.0067 (5) 0.0015 (4)
C101 0.0191 (6) 0.0150 (5) 0.0169 (6) 0.0014 (4) 0.0043 (4) 0.0003 (4)
C11 0.0151 (5) 0.0186 (6) 0.0177 (5) −0.0011 (4) 0.0042 (4) 0.0029 (4)
C12 0.0164 (5) 0.0204 (6) 0.0192 (6) −0.0019 (4) 0.0074 (4) 0.0001 (4)
C13 0.0171 (5) 0.0176 (6) 0.0328 (7) 0.0015 (4) 0.0112 (5) 0.0048 (5)
C14 0.0165 (6) 0.0288 (7) 0.0252 (6) 0.0029 (5) 0.0067 (5) 0.0138 (5)
C15 0.0206 (6) 0.0339 (7) 0.0158 (6) −0.0013 (5) 0.0046 (5) 0.0035 (5)
C16 0.0204 (6) 0.0211 (6) 0.0197 (6) −0.0004 (5) 0.0043 (5) −0.0008 (5)
C21 0.0191 (5) 0.0164 (5) 0.0104 (5) −0.0003 (4) 0.0040 (4) −0.0005 (4)
C22 0.0199 (6) 0.0190 (6) 0.0172 (5) 0.0031 (4) 0.0068 (4) 0.0012 (4)
C23 0.0318 (6) 0.0141 (5) 0.0180 (6) 0.0006 (5) 0.0091 (5) −0.0006 (4)
C24 0.0265 (6) 0.0221 (6) 0.0157 (5) −0.0096 (5) 0.0051 (5) −0.0034 (5)
C25 0.0169 (6) 0.0287 (6) 0.0183 (6) −0.0010 (5) 0.0024 (4) −0.0013 (5)
C26 0.0207 (6) 0.0168 (6) 0.0177 (5) 0.0031 (4) 0.0033 (4) 0.0004 (4)

Geometric parameters (Å, °)

C1—N2 1.2868 (15) C10—C101 1.3688 (16)
C1—C101 1.4862 (16) C10—H10 0.95
C1—C11 1.4936 (16) C11—C16 1.3938 (16)
N2—C3 1.4769 (14) C11—C12 1.3969 (16)
C3—C21 1.5128 (15) C12—C13 1.3920 (16)
C3—C4 1.5369 (15) C12—H12 0.95
C3—H3 1.00 C13—C14 1.3884 (18)
C4—C41 1.5073 (15) C13—H13 0.95
C4—H41 0.99 C14—C15 1.3873 (19)
C4—H42 0.99 C14—H14 0.95
C41—N5 1.3152 (14) C15—C16 1.3875 (17)
C41—C101 1.4293 (15) C15—H15 0.95
N5—C51 1.3764 (14) C16—H16 0.95
C51—C6 1.4146 (16) C21—C22 1.3925 (16)
C51—C91 1.4233 (16) C21—C26 1.3962 (16)
C6—C7 1.3717 (17) C22—C23 1.3901 (17)
C6—H6 0.95 C22—H22 0.95
C7—C8 1.4132 (17) C23—C24 1.3874 (17)
C7—H7 0.95 C23—H23 0.95
C8—C9 1.3679 (17) C24—C25 1.3887 (18)
C8—H8 0.95 C24—H24 0.95
C9—C91 1.4168 (16) C25—C26 1.3891 (17)
C9—H9 0.95 C25—H25 0.95
C91—C10 1.4126 (16) C26—H26 0.95
N2—C1—C101 123.67 (11) C91—C10—H10 120.1
N2—C1—C11 117.79 (10) C10—C101—C41 118.67 (10)
C101—C1—C11 118.47 (10) C10—C101—C1 123.78 (10)
C1—N2—C3 116.92 (9) C41—C101—C1 117.52 (10)
N2—C3—C21 110.15 (9) C16—C11—C12 119.29 (10)
N2—C3—C4 111.61 (9) C16—C11—C1 119.87 (11)
C21—C3—C4 111.89 (9) C12—C11—C1 120.75 (10)
N2—C3—H3 107.7 C13—C12—C11 120.04 (11)
C21—C3—H3 107.7 C13—C12—H12 120.0
C4—C3—H3 107.7 C11—C12—H12 120.0
C41—C4—C3 109.85 (9) C14—C13—C12 120.07 (11)
C41—C4—H41 109.7 C14—C13—H13 120.0
C3—C4—H41 109.7 C12—C13—H13 120.0
C41—C4—H42 109.7 C15—C14—C13 120.13 (11)
C3—C4—H42 109.7 C15—C14—H14 119.9
H41—C4—H42 108.2 C13—C14—H14 119.9
N5—C41—C101 123.53 (10) C14—C15—C16 119.89 (11)
N5—C41—C4 119.76 (10) C14—C15—H15 120.1
C101—C41—C4 116.69 (9) C16—C15—H15 120.1
C41—N5—C51 117.96 (9) C15—C16—C11 120.55 (11)
N5—C51—C6 119.02 (10) C15—C16—H16 119.7
N5—C51—C91 122.44 (10) C11—C16—H16 119.7
C6—C51—C91 118.54 (10) C22—C21—C26 118.52 (10)
C7—C6—C51 120.56 (11) C22—C21—C3 120.23 (10)
C7—C6—H6 119.7 C26—C21—C3 121.23 (10)
C51—C6—H6 119.7 C23—C22—C21 121.02 (11)
C6—C7—C8 120.68 (11) C23—C22—H22 119.5
C6—C7—H7 119.7 C21—C22—H22 119.5
C8—C7—H7 119.7 C24—C23—C22 120.00 (11)
C9—C8—C7 120.24 (11) C24—C23—H23 120.0
C9—C8—H8 119.9 C22—C23—H23 120.0
C7—C8—H8 119.9 C23—C24—C25 119.51 (11)
C8—C9—C91 120.22 (11) C23—C24—H24 120.2
C8—C9—H9 119.9 C25—C24—H24 120.2
C91—C9—H9 119.9 C24—C25—C26 120.43 (11)
C10—C91—C9 122.76 (11) C24—C25—H25 119.8
C10—C91—C51 117.49 (10) C26—C25—H25 119.8
C9—C91—C51 119.74 (10) C25—C26—C21 120.52 (11)
C101—C10—C91 119.80 (10) C25—C26—H26 119.7
C101—C10—H10 120.1 C21—C26—H26 119.7
C101—C1—N2—C3 3.86 (17) C4—C41—C101—C1 −3.06 (15)
C11—C1—N2—C3 −179.16 (10) N2—C1—C101—C10 −157.63 (12)
C1—N2—C3—C21 −166.72 (10) C11—C1—C101—C10 25.41 (17)
C1—N2—C3—C4 −41.79 (14) N2—C1—C101—C41 20.27 (17)
N2—C3—C4—C41 55.03 (12) C11—C1—C101—C41 −156.69 (10)
C21—C3—C4—C41 178.98 (9) N2—C1—C11—C16 41.15 (16)
C3—C4—C41—N5 146.44 (10) C101—C1—C11—C16 −141.71 (11)
C3—C4—C41—C101 −32.39 (13) N2—C1—C11—C12 −135.55 (12)
C101—C41—N5—C51 2.88 (16) C101—C1—C11—C12 41.59 (16)
C4—C41—N5—C51 −175.87 (9) C16—C11—C12—C13 −0.41 (16)
C41—N5—C51—C6 179.30 (10) C1—C11—C12—C13 176.31 (10)
C41—N5—C51—C91 0.11 (15) C11—C12—C13—C14 1.41 (17)
N5—C51—C6—C7 −179.86 (10) C12—C13—C14—C15 −1.41 (17)
C91—C51—C6—C7 −0.64 (16) C13—C14—C15—C16 0.39 (18)
C51—C6—C7—C8 0.24 (17) C14—C15—C16—C11 0.61 (18)
C6—C7—C8—C9 0.89 (18) C12—C11—C16—C15 −0.60 (17)
C7—C8—C9—C91 −1.58 (17) C1—C11—C16—C15 −177.35 (11)
C8—C9—C91—C10 −177.57 (11) N2—C3—C21—C22 −139.22 (10)
C8—C9—C91—C51 1.16 (17) C4—C3—C21—C22 96.01 (12)
N5—C51—C91—C10 −2.06 (16) N2—C3—C21—C26 42.74 (13)
C6—C51—C91—C10 178.75 (10) C4—C3—C21—C26 −82.02 (12)
N5—C51—C91—C9 179.14 (10) C26—C21—C22—C23 0.20 (16)
C6—C51—C91—C9 −0.05 (16) C3—C21—C22—C23 −177.89 (10)
C9—C91—C10—C101 179.82 (10) C21—C22—C23—C24 0.03 (17)
C51—C91—C10—C101 1.06 (16) C22—C23—C24—C25 0.09 (17)
C91—C10—C101—C41 1.65 (16) C23—C24—C25—C26 −0.43 (17)
C91—C10—C101—C1 179.53 (10) C24—C25—C26—C21 0.66 (17)
N5—C41—C101—C10 −3.83 (17) C22—C21—C26—C25 −0.54 (16)
C4—C41—C101—C10 174.95 (10) C3—C21—C26—C25 177.53 (10)
N5—C41—C101—C1 178.16 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5246).

References

  1. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Johnson, C. K. (1965). ORTEP Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
  4. Laavanya, P., Panchanatheswaran, K., Sivakumar, B., Jeyaraman, R. & Krause Bauer, J. A. (2001). Acta Cryst. E57, o599–o601.
  5. Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem.56, 4833–4840.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sivakumar, B. (2000). PhD thesis, Bharathidasan University, Tiruchirappalli, India.
  8. Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013619/bt5246sup1.cif

e-66-o1114-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013619/bt5246Isup2.hkl

e-66-o1114-Isup2.hkl (165.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES