Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1082. doi: 10.1107/S1600536810013097

17,18-Dibromo-8-methyl-4,12-ditosyl-3,4,5,6,7,8,9,10,11,12,13,14-dodeca­hydro-2H-benzo[b][1,4,7,11,15]dioxatriaza­cyclo­hepta­decine

Zeynep Keleşoğlu a, Elif Çelenk Kaya b, Halit Kantekin c, Orhan Büyükgüngör a,*
PMCID: PMC2979080  PMID: 21579136

Abstract

In the title compound, C31H39Br2N3O6S2, a 17-membered aza-macrocyclic ligand containing two ether O and three aza N atoms, the three pendant aromatic rings form an ‘E’ shape. The dihedral angles between the central benzene ring and the side ones are 17.8 (3) and 7.4 (3)°, and the dihedral angle between the tosyl rings is 10.6 (3)°. The methyl group is disordered over two orientations, with occupancies of 0.52 (15) and 0.48 (15).

Related literature

For general background to aza-macrocyclic ligands, see: Fry et al. (1997); Xu et al. (1997); Canales et al. (2000); Shishkina et al. (2007). For related structures, see: Hökelek et al. (2001, 2004); Işik et al. (1999). For further synthetic details, see: Notni et al. (2006); Koçak et al. (1994).graphic file with name e-66-o1082-scheme1.jpg

Experimental

Crystal data

  • C31H39Br2N3O6S2

  • M r = 773.59

  • Monoclinic, Inline graphic

  • a = 18.7520 (9) Å

  • b = 10.6864 (4) Å

  • c = 19.9527 (9) Å

  • β = 121.416 (3)°

  • V = 3412.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 296 K

  • 0.60 × 0.52 × 0.37 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.260, T max = 0.425

  • 24321 measured reflections

  • 7243 independent reflections

  • 4640 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.152

  • S = 1.02

  • 7243 reflections

  • 409 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −1.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810013097/hb5401sup1.cif

e-66-o1082-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013097/hb5401Isup2.hkl

e-66-o1082-Isup2.hkl (347.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Fund).

supplementary crystallographic information

Comment

The synthesis and characterization of coordination compounds with aza-macrocyclic ligands has evolved during the last years as one of the main research areas in coordination chemistry (Fry et al.,1997; Xu et al., 1997). By the end of the last century the macrocyclic polyethers (crown ethers) had became one of the most popular chemical reagents with a very wide area of applications. They are used successfully in chemistry of 'host–guest' complexes, extraction, phase transfer catalysis, organic synthesis, analytical chemistry, biology, medicine, ecology, etc. (Shishkina et al., 2007). In addition, aza-macrocyclic ligands, as well as their coordination and organometallic compounds play important roles in catalysis in the activation of small molecules, showing catalytic activity in electrochemically assisted reactions with several substrates (Canales et al., 2000).

We have investigated the title structure of macrocyclic multidentate O2N3 donor-type ligand (Fig. 1). The 17-membered macrocyclic ring contains two ether O and three aza N atoms. The ligand cavity for macrocyclic ring plays an important role in metal-ion selectivity (Hökelek et al.,2004; Hökelek et al., 2001).

The 17-membered macro-cyclic molecule with O2N3 type ring, the deviations from the least-squares plane defined by atoms O1, O2, N1, N2 and N3 are -0.661 (4)Å (O1), 0.363 (3)Å (O2), -0.352 (3)(N1) and 0.806 (3)Å (N2) and C29 shows the maximum r.m.s deviation from the plane as 1.067 (3).

The dihedral angle between the tosyl rings A(C18—C23, C24, S2) and B(C11—C16, C17, S1) is 10.6 (3)° [both nearly planar with r.m.s. deviations of 0.11 (3) Å for S1 and -0.06 (3) Å for S2, from the mean planes]. The geometry at the S atoms is distorted from the tetrahedral configuration [the largest angle is 120.3 (3)° for O3—S1—O4] and agree with the corresponding angle 120.4 (3)° in 10,11-Dibromo-3,6-ditosyl-3,6-diazabicyclo-[6.4.0]dodeca-1 (8),9,11-triene (Işik et al., 1999).

The benzene rings C(C1—C6), D(C11—C16) and E(C18—C23) are planar with the maximum r.m.s. deviation from the mean plane as 0.021 (4) Å for C13. The dihedral angles between these benzene rings are C/D = 17.8 (3)°, D/E = 10.9 (3)° and C/E = 7.4 (3)°. The conformation of the title compound's macrocyclic ring can be given by the torsion angles. The optimum values of the torsion angles in a macrocyclic ring are 180° (anti) and 60° (gauche). In the compound (I), seven torsion angles are seems to be anti and five ones as gauche (Table 1). There is no classic hydrogen bonds in (I) and van der Waals interactions are effective in the molecular packing.

Experimental

N,N'-(3,3'-(methylazanediyl)bis(propane-3,1-diyl))bis(4-methyl benzenesulfonamide) (Notni et al., 2006) (1 g, 2.21 mmol) was dissolved in dry acetonitrile (50 ml) containing finely ground anhydrous Cs2CO3 (2.16 g, 6.63 mmol) and purged under nitrogen in a Schlenk system. This solution was stirred at 50 °C and a solution 1,2-bis(2-iodo-ethoxy) -4,5-dibromobenzene (Koçak et al., 1994) (1.27 g, 2.21 mmol) in dry acetonitrile (30 ml) was added dropwise over a period of 3 h at reflux temperature (90 °C). The reaction was monitored by TLC using hexane/ethyl acetate (1:1) and was complete in 8 days at the reflux temperature. At the end of this period the solvent was removed under reduced pressure, mixed with water (50 ml) and then extracted with chloroform (3 times 50). The combine extract was washed with water, dried over Na2SO4 and filtered and evaporated to dryness. The product was chromatographed on silica gel with hexane/ethyl acetate (2:3). Finally the white solid product was obtained. This product was crystallized from chloroform/hexane to yield colourless prisms of (I). This compound is soluble in chloroform, dichloromethane, dimethyl formamide. Yield: 0.65 g (%38). IR(KBr pellets): 3026 (Ar–H), 2926–2854 (Aliph. C–H), 1642, 1597, 1493, 1335, 1251, 1156, 815. 1H NMR (CDCl3): 7.67 (d, 4H, Ar–Ts—H), 7.22 (d, 4H, Ar–Ts—H), 6.81 (s, 2H, Ar–H), 3.97 (t, 4H, O–CH2), 3.66 (t, 4H, N–CH2), 3.45 (t, 4H, N–CH2), 2.37 (t, 4H, N–CH2), 2.21 (s, 6H, CH3), 2.08 (s, 3H, N—CH3), 1.70 (m, 4H, CH2). 13C NMR (CDCl3): 148.15 (Ar–C), 148.61 (Ar–C), 137.93 (Ar–C), 129.86 (Ar–C),127.06 (Ar–C), 117.47 (Ar–C), 115.25 (Ar–C), 69.21 (O–CH2), 54.26 (N–CH2), 48.58 (N–CH2), 47.96 (N–CH2), 41.56 (N–CH2), 26.98 (CH2), 21.77 (CH3).

Refinement

All H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 and 1.5 times of the Ueq of the parent atom). The methyl group is disordered over two orientations, with occupancies of 0.52 (15) and O.48 (15).

Figures

Fig. 1.

Fig. 1.

A view of (I), showing 30% probability displacement ellipsoids. Only the major disorder component of the methyl group is shown.

Crystal data

C31H39Br2N3O6S2 F(000) = 1584
Mr = 773.59 Dx = 1.506 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 22517 reflections
a = 18.7520 (9) Å θ = 1.2–27.3°
b = 10.6864 (4) Å µ = 2.54 mm1
c = 19.9527 (9) Å T = 296 K
β = 121.416 (3)° Prism, colorless
V = 3412.2 (3) Å3 0.60 × 0.52 × 0.37 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 7243 independent reflections
Radiation source: fine-focus sealed tube 4640 reflections with I > 2σ(I)
graphite Rint = 0.049
Detector resolution: 6.67 pixels mm-1 θmax = 26.8°, θmin = 2.0°
rotation method scans h = −23→21
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −13→13
Tmin = 0.260, Tmax = 0.425 l = −25→25
24321 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 3.5929P] where P = (Fo2 + 2Fc2)/3
7243 reflections (Δ/σ)max = 0.001
409 parameters Δρmax = 1.31 e Å3
0 restraints Δρmin = −1.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7001 (3) 0.3914 (4) 0.5560 (2) 0.0486 (10)
C2 0.6569 (3) 0.2996 (4) 0.5022 (3) 0.0632 (12)
H2 0.6427 0.2263 0.5176 0.076*
C3 0.6341 (3) 0.3154 (4) 0.4237 (3) 0.0655 (13)
C4 0.6564 (3) 0.4214 (5) 0.4013 (2) 0.0585 (11)
C5 0.6994 (3) 0.5155 (4) 0.4557 (2) 0.0556 (11)
H5 0.7138 0.5883 0.4400 0.067*
C6 0.7208 (3) 0.5021 (4) 0.5325 (2) 0.0468 (9)
C7 0.7871 (3) 0.7025 (4) 0.5702 (3) 0.0573 (11)
H7A 0.7425 0.7350 0.5203 0.069*
H7B 0.8351 0.6855 0.5656 0.069*
C8 0.8097 (3) 0.7969 (4) 0.6346 (3) 0.0579 (11)
H8A 0.8537 0.7617 0.6838 0.069*
H8B 0.8322 0.8707 0.6238 0.069*
C9 0.7245 (3) 0.2609 (4) 0.6628 (3) 0.0564 (11)
H9A 0.7463 0.2000 0.6419 0.068*
H9B 0.6681 0.2367 0.6474 0.068*
C10 0.7790 (3) 0.2666 (5) 0.7508 (2) 0.0569 (11)
H10A 0.7519 0.3193 0.7706 0.068*
H10B 0.7832 0.1831 0.7716 0.068*
C11 0.5504 (3) 0.7378 (6) 0.5204 (3) 0.0806 (15)
H11 0.5552 0.7363 0.5692 0.097*
C12 0.4984 (3) 0.6531 (6) 0.4624 (4) 0.0842 (17)
H12 0.4678 0.5964 0.4729 0.101*
C13 0.4909 (3) 0.6504 (5) 0.3900 (3) 0.0723 (14)
C14 0.5329 (3) 0.7394 (6) 0.3749 (3) 0.0813 (16)
H14 0.5267 0.7422 0.3256 0.098*
C15 0.5846 (3) 0.8260 (5) 0.4315 (3) 0.0790 (16)
H15 0.6126 0.8857 0.4199 0.095*
C16 0.5944 (3) 0.8236 (5) 0.5051 (3) 0.0645 (12)
C17 0.4383 (4) 0.5511 (6) 0.3308 (4) 0.098 (2)
H17A 0.3818 0.5570 0.3189 0.118*
H17B 0.4603 0.4699 0.3521 0.118*
H17C 0.4394 0.5633 0.2836 0.118*
C18 0.9238 (3) 0.2680 (4) 0.6840 (3) 0.0580 (11)
C19 0.8771 (4) 0.1928 (5) 0.6181 (4) 0.0787 (16)
H19 0.8517 0.1203 0.6215 0.094*
C20 0.8690 (4) 0.2273 (6) 0.5484 (4) 0.0888 (19)
H20 0.8380 0.1763 0.5048 0.107*
C21 0.9045 (3) 0.3334 (5) 0.5398 (3) 0.0692 (13)
C22 0.9515 (3) 0.4052 (5) 0.6057 (3) 0.0694 (13)
H22 0.9773 0.4770 0.6021 0.083*
C23 0.9614 (3) 0.3740 (5) 0.6772 (3) 0.0631 (12)
H23 0.9934 0.4245 0.7208 0.076*
C24 0.8933 (5) 0.3707 (7) 0.4621 (4) 0.106 (2)
H24A 0.9469 0.3748 0.4669 0.128*
H24B 0.8668 0.4511 0.4470 0.128*
H24C 0.8590 0.3098 0.4230 0.128*
C25 0.7356 (3) 0.7777 (5) 0.7079 (3) 0.0642 (12)
H25A 0.7467 0.6888 0.7092 0.077*
H25B 0.6793 0.7876 0.6975 0.077*
C26 0.7965 (4) 0.8339 (5) 0.7868 (3) 0.0759 (15)
H26A 0.7847 0.9225 0.7857 0.091*
H26B 0.8527 0.8256 0.7966 0.091*
C27 0.7927 (5) 0.7729 (5) 0.8533 (3) 0.0908 (19)
H27A 0.8327 0.8134 0.9022 0.109*
H27B 0.7374 0.7858 0.8450 0.109*
C28 0.8987 (4) 0.6155 (6) 0.8929 (3) 0.101 (2)
H28A 0.9289 0.6346 0.9486 0.122*
H28B 0.9193 0.6707 0.8681 0.122*
C29 0.9159 (4) 0.4810 (6) 0.8816 (3) 0.094 (2)
H29A 0.9758 0.4678 0.9086 0.113*
H29B 0.8937 0.4256 0.9048 0.113*
C30 0.8775 (3) 0.4486 (4) 0.7963 (3) 0.0644 (12)
H30A 0.8245 0.4920 0.7662 0.077*
H30B 0.9138 0.4782 0.7786 0.077*
C31A 0.797 (8) 0.589 (5) 0.919 (6) 0.14 (2) 0.52 (15)
H31A 0.8063 0.4999 0.9222 0.205* 0.52 (15)
H31B 0.7410 0.6057 0.9052 0.205* 0.52 (15)
H31C 0.8357 0.6266 0.9684 0.205* 0.52 (15)
C31B 0.758 (5) 0.570 (6) 0.890 (4) 0.118 (12) 0.48 (15)
H31D 0.7627 0.4809 0.8864 0.178* 0.48 (15)
H31E 0.7007 0.5943 0.8591 0.178* 0.48 (15)
H31F 0.7797 0.5918 0.9443 0.178* 0.48 (15)
N1 0.7410 (2) 0.8354 (3) 0.6445 (2) 0.0543 (9)
N2 0.8634 (2) 0.3142 (3) 0.7806 (2) 0.0545 (9)
N3 0.8103 (4) 0.6388 (4) 0.8600 (3) 0.0798 (13)
O1 0.72458 (19) 0.3840 (3) 0.63322 (15) 0.0562 (7)
O2 0.76047 (19) 0.5906 (3) 0.58982 (16) 0.0551 (7)
O3 0.7025 (3) 0.9994 (3) 0.5462 (2) 0.0861 (12)
O4 0.6274 (3) 0.9787 (4) 0.6179 (3) 0.0931 (12)
O5 0.9052 (3) 0.1027 (3) 0.7685 (3) 0.0910 (12)
O6 1.0111 (2) 0.2702 (4) 0.8347 (2) 0.0906 (12)
S1 0.66723 (9) 0.92262 (11) 0.58044 (8) 0.0680 (3)
S2 0.93076 (8) 0.23094 (12) 0.77324 (8) 0.0643 (3)
Br1 0.56928 (5) 0.18578 (6) 0.35290 (3) 0.1104 (3)
Br2 0.62827 (4) 0.44795 (6) 0.29617 (3) 0.0819 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (2) 0.046 (2) 0.043 (2) 0.0069 (19) 0.0199 (18) 0.0034 (17)
C2 0.079 (3) 0.044 (2) 0.055 (2) −0.001 (2) 0.026 (2) 0.0036 (19)
C3 0.077 (3) 0.051 (3) 0.050 (2) 0.002 (2) 0.021 (2) −0.004 (2)
C4 0.063 (3) 0.064 (3) 0.045 (2) 0.005 (2) 0.026 (2) 0.001 (2)
C5 0.063 (3) 0.053 (3) 0.049 (2) −0.002 (2) 0.028 (2) 0.0026 (19)
C6 0.048 (2) 0.044 (2) 0.046 (2) 0.0026 (18) 0.0217 (18) −0.0010 (17)
C7 0.060 (3) 0.052 (3) 0.060 (2) −0.008 (2) 0.031 (2) 0.001 (2)
C8 0.057 (3) 0.051 (3) 0.060 (3) −0.010 (2) 0.026 (2) −0.001 (2)
C9 0.059 (3) 0.047 (2) 0.059 (2) 0.004 (2) 0.028 (2) 0.012 (2)
C10 0.057 (3) 0.062 (3) 0.056 (2) 0.012 (2) 0.032 (2) 0.020 (2)
C11 0.068 (3) 0.096 (4) 0.069 (3) −0.011 (3) 0.030 (3) 0.004 (3)
C12 0.058 (3) 0.093 (4) 0.095 (4) −0.017 (3) 0.035 (3) 0.004 (3)
C13 0.045 (3) 0.078 (4) 0.072 (3) 0.002 (2) 0.016 (2) 0.003 (3)
C14 0.070 (3) 0.094 (4) 0.057 (3) 0.000 (3) 0.018 (3) 0.011 (3)
C15 0.073 (4) 0.074 (3) 0.067 (3) −0.010 (3) 0.020 (3) 0.021 (3)
C16 0.056 (3) 0.060 (3) 0.065 (3) 0.010 (2) 0.022 (2) 0.014 (2)
C17 0.068 (4) 0.103 (5) 0.100 (4) −0.011 (3) 0.027 (3) −0.015 (4)
C18 0.055 (3) 0.048 (2) 0.078 (3) 0.003 (2) 0.039 (2) −0.005 (2)
C19 0.095 (4) 0.053 (3) 0.117 (5) −0.020 (3) 0.075 (4) −0.031 (3)
C20 0.099 (4) 0.088 (4) 0.095 (4) −0.034 (4) 0.062 (4) −0.054 (3)
C21 0.070 (3) 0.074 (3) 0.071 (3) −0.004 (3) 0.042 (3) −0.018 (3)
C22 0.083 (4) 0.061 (3) 0.073 (3) −0.013 (3) 0.046 (3) −0.007 (2)
C23 0.065 (3) 0.060 (3) 0.063 (3) −0.014 (2) 0.032 (2) −0.012 (2)
C24 0.127 (6) 0.128 (6) 0.073 (4) 0.000 (5) 0.058 (4) −0.016 (4)
C25 0.071 (3) 0.058 (3) 0.063 (3) −0.001 (2) 0.035 (3) 0.005 (2)
C26 0.105 (4) 0.058 (3) 0.066 (3) 0.004 (3) 0.045 (3) −0.003 (2)
C27 0.142 (6) 0.070 (4) 0.073 (3) 0.020 (4) 0.065 (4) 0.003 (3)
C28 0.117 (6) 0.080 (4) 0.059 (3) 0.009 (4) 0.013 (3) −0.016 (3)
C29 0.100 (4) 0.082 (4) 0.056 (3) 0.022 (3) 0.010 (3) −0.005 (3)
C30 0.076 (3) 0.057 (3) 0.057 (3) 0.010 (2) 0.033 (2) 0.006 (2)
C31A 0.23 (6) 0.092 (18) 0.16 (4) 0.02 (3) 0.15 (4) 0.03 (2)
C31B 0.18 (3) 0.12 (2) 0.10 (2) −0.02 (2) 0.11 (2) 0.002 (16)
N1 0.055 (2) 0.049 (2) 0.0530 (19) 0.0003 (17) 0.0237 (17) 0.0008 (16)
N2 0.054 (2) 0.052 (2) 0.057 (2) 0.0107 (17) 0.0285 (18) 0.0106 (16)
N3 0.121 (4) 0.067 (3) 0.068 (3) 0.017 (3) 0.060 (3) 0.009 (2)
O1 0.071 (2) 0.0450 (16) 0.0431 (14) 0.0023 (14) 0.0232 (14) 0.0057 (12)
O2 0.0665 (19) 0.0474 (16) 0.0483 (15) −0.0081 (14) 0.0277 (14) −0.0018 (13)
O3 0.098 (3) 0.0517 (19) 0.084 (2) −0.0102 (19) 0.030 (2) 0.0179 (18)
O4 0.089 (3) 0.072 (2) 0.113 (3) 0.022 (2) 0.049 (2) −0.010 (2)
O5 0.104 (3) 0.0483 (19) 0.143 (4) 0.023 (2) 0.080 (3) 0.030 (2)
O6 0.055 (2) 0.121 (3) 0.082 (2) 0.018 (2) 0.0259 (19) 0.027 (2)
S1 0.0714 (8) 0.0436 (6) 0.0742 (8) 0.0055 (6) 0.0275 (7) 0.0053 (5)
S2 0.0548 (7) 0.0589 (7) 0.0799 (8) 0.0187 (6) 0.0355 (6) 0.0218 (6)
Br1 0.1618 (7) 0.0672 (4) 0.0607 (3) −0.0270 (4) 0.0290 (4) −0.0158 (3)
Br2 0.1014 (5) 0.0923 (4) 0.0486 (3) −0.0089 (3) 0.0368 (3) −0.0056 (3)

Geometric parameters (Å, °)

C1—O1 1.361 (5) C19—H19 0.9300
C1—C2 1.366 (6) C20—C21 1.370 (8)
C1—C6 1.400 (6) C20—H20 0.9300
C2—C3 1.401 (6) C21—C22 1.374 (7)
C2—H2 0.9300 C21—C24 1.504 (8)
C3—C4 1.361 (7) C22—C23 1.379 (7)
C3—Br1 1.898 (5) C22—H22 0.9300
C4—C5 1.388 (6) C23—H23 0.9300
C4—Br2 1.899 (4) C24—H24A 0.9600
C5—C6 1.374 (5) C24—H24B 0.9600
C5—H5 0.9300 C24—H24C 0.9600
C6—O2 1.368 (5) C25—N1 1.456 (6)
C7—O2 1.427 (5) C25—C26 1.506 (7)
C7—C8 1.510 (6) C25—H25A 0.9700
C7—H7A 0.9700 C25—H25B 0.9700
C7—H7B 0.9700 C26—C27 1.513 (7)
C8—N1 1.462 (6) C26—H26A 0.9700
C8—H8A 0.9700 C26—H26B 0.9700
C8—H8B 0.9700 C27—N3 1.462 (7)
C9—O1 1.442 (5) C27—H27A 0.9700
C9—C10 1.503 (6) C27—H27B 0.9700
C9—H9A 0.9700 C28—N3 1.451 (8)
C9—H9B 0.9700 C28—C29 1.516 (8)
C10—N2 1.461 (6) C28—H28A 0.9700
C10—H10A 0.9700 C28—H28B 0.9700
C10—H10B 0.9700 C29—C30 1.501 (7)
C11—C16 1.371 (7) C29—H29A 0.9700
C11—C12 1.390 (8) C29—H29B 0.9700
C11—H11 0.9300 C30—N2 1.465 (6)
C12—C13 1.376 (8) C30—H30A 0.9700
C12—H12 0.9300 C30—H30B 0.9700
C13—C14 1.365 (8) C31A—N3 1.42 (4)
C13—C17 1.511 (8) C31A—H31A 0.9600
C14—C15 1.389 (8) C31A—H31B 0.9600
C14—H14 0.9300 C31A—H31C 0.9600
C15—C16 1.380 (7) C31B—N3 1.58 (6)
C15—H15 0.9300 C31B—H31D 0.9600
C16—S1 1.762 (5) C31B—H31E 0.9600
C17—H17A 0.9600 C31B—H31F 0.9600
C17—H17B 0.9600 N1—S1 1.604 (4)
C17—H17C 0.9600 N2—S2 1.613 (4)
C18—C23 1.377 (7) O3—S1 1.432 (4)
C18—C19 1.392 (7) O4—S1 1.434 (4)
C18—S2 1.762 (5) O5—S2 1.439 (4)
C19—C20 1.370 (8) O6—S2 1.423 (4)
O1—C1—C2 124.1 (4) C23—C22—H22 119.1
O1—C1—C6 116.1 (4) C18—C23—C22 120.0 (5)
C2—C1—C6 119.8 (4) C18—C23—H23 120.0
C1—C2—C3 120.2 (4) C22—C23—H23 120.0
C1—C2—H2 119.9 C21—C24—H24A 109.5
C3—C2—H2 119.9 C21—C24—H24B 109.5
C4—C3—C2 120.0 (4) H24A—C24—H24B 109.5
C4—C3—Br1 123.4 (3) C21—C24—H24C 109.5
C2—C3—Br1 116.6 (4) H24A—C24—H24C 109.5
C3—C4—C5 120.0 (4) H24B—C24—H24C 109.5
C3—C4—Br2 122.1 (3) N1—C25—C26 112.4 (4)
C5—C4—Br2 117.9 (4) N1—C25—H25A 109.1
C6—C5—C4 120.6 (4) C26—C25—H25A 109.1
C6—C5—H5 119.7 N1—C25—H25B 109.1
C4—C5—H5 119.7 C26—C25—H25B 109.1
O2—C6—C5 125.2 (4) H25A—C25—H25B 107.9
O2—C6—C1 115.4 (3) C25—C26—C27 112.8 (5)
C5—C6—C1 119.4 (4) C25—C26—H26A 109.0
O2—C7—C8 108.0 (3) C27—C26—H26A 109.0
O2—C7—H7A 110.1 C25—C26—H26B 109.0
C8—C7—H7A 110.1 C27—C26—H26B 109.0
O2—C7—H7B 110.1 H26A—C26—H26B 107.8
C8—C7—H7B 110.1 N3—C27—C26 113.0 (4)
H7A—C7—H7B 108.4 N3—C27—H27A 109.0
N1—C8—C7 115.3 (4) C26—C27—H27A 109.0
N1—C8—H8A 108.5 N3—C27—H27B 109.0
C7—C8—H8A 108.5 C26—C27—H27B 109.0
N1—C8—H8B 108.5 H27A—C27—H27B 107.8
C7—C8—H8B 108.5 N3—C28—C29 112.1 (5)
H8A—C8—H8B 107.5 N3—C28—H28A 109.2
O1—C9—C10 107.2 (4) C29—C28—H28A 109.2
O1—C9—H9A 110.3 N3—C28—H28B 109.2
C10—C9—H9A 110.3 C29—C28—H28B 109.2
O1—C9—H9B 110.3 H28A—C28—H28B 107.9
C10—C9—H9B 110.3 C30—C29—C28 112.0 (5)
H9A—C9—H9B 108.5 C30—C29—H29A 109.2
N2—C10—C9 115.0 (4) C28—C29—H29A 109.2
N2—C10—H10A 108.5 C30—C29—H29B 109.2
C9—C10—H10A 108.5 C28—C29—H29B 109.2
N2—C10—H10B 108.5 H29A—C29—H29B 107.9
C9—C10—H10B 108.5 N2—C30—C29 113.3 (4)
H10A—C10—H10B 107.5 N2—C30—H30A 108.9
C16—C11—C12 119.5 (5) C29—C30—H30A 108.9
C16—C11—H11 120.2 N2—C30—H30B 108.9
C12—C11—H11 120.2 C29—C30—H30B 108.9
C13—C12—C11 122.0 (6) H30A—C30—H30B 107.7
C13—C12—H12 119.0 N3—C31A—H31A 109.5
C11—C12—H12 119.0 N3—C31A—H31B 109.5
C14—C13—C12 117.6 (5) N3—C31A—H31C 109.5
C14—C13—C17 122.2 (6) N3—C31B—H31D 109.5
C12—C13—C17 120.2 (6) N3—C31B—H31E 109.5
C13—C14—C15 121.5 (5) H31D—C31B—H31E 109.5
C13—C14—H14 119.3 N3—C31B—H31F 109.5
C15—C14—H14 119.3 H31D—C31B—H31F 109.5
C16—C15—C14 120.2 (5) H31E—C31B—H31F 109.5
C16—C15—H15 119.9 C25—N1—C8 117.6 (4)
C14—C15—H15 119.9 C25—N1—S1 121.2 (3)
C11—C16—C15 119.1 (5) C8—N1—S1 120.7 (3)
C11—C16—S1 120.0 (4) C10—N2—C30 117.7 (4)
C15—C16—S1 120.7 (4) C10—N2—S2 120.3 (3)
C13—C17—H17A 109.5 C30—N2—S2 119.9 (3)
C13—C17—H17B 109.5 C31A—N3—C28 102 (5)
H17A—C17—H17B 109.5 C31A—N3—C27 109 (2)
C13—C17—H17C 109.5 C28—N3—C27 111.2 (5)
H17A—C17—H17C 109.5 C28—N3—C31B 122 (3)
H17B—C17—H17C 109.5 C27—N3—C31B 110 (2)
C23—C18—C19 119.0 (5) C1—O1—C9 116.4 (3)
C23—C18—S2 120.8 (4) C6—O2—C7 117.8 (3)
C19—C18—S2 120.2 (4) O3—S1—O4 120.3 (3)
C20—C19—C18 119.0 (5) O3—S1—N1 107.0 (2)
C20—C19—H19 120.5 O4—S1—N1 107.1 (2)
C18—C19—H19 120.5 O3—S1—C16 106.4 (2)
C21—C20—C19 123.1 (5) O4—S1—C16 108.2 (3)
C21—C20—H20 118.4 N1—S1—C16 107.1 (2)
C19—C20—H20 118.4 O6—S2—O5 120.3 (3)
C20—C21—C22 116.9 (5) O6—S2—N2 106.7 (2)
C20—C21—C24 122.1 (5) O5—S2—N2 106.3 (2)
C22—C21—C24 120.9 (5) O6—S2—C18 106.9 (2)
C21—C22—C23 121.9 (5) O5—S2—C18 107.5 (2)
C21—C22—H22 119.1 N2—S2—C18 108.7 (2)
O1—C1—C2—C3 179.8 (4) C26—C25—N1—S1 −110.2 (4)
C6—C1—C2—C3 0.6 (7) C7—C8—N1—C25 100.3 (5)
C1—C2—C3—C4 1.4 (8) C7—C8—N1—S1 −71.1 (5)
C1—C2—C3—Br1 −176.8 (4) C9—C10—N2—C30 92.1 (5)
C2—C3—C4—C5 −2.2 (8) C9—C10—N2—S2 −71.1 (5)
Br1—C3—C4—C5 175.9 (4) C29—C30—N2—C10 99.7 (5)
C2—C3—C4—Br2 179.4 (4) C29—C30—N2—S2 −97.0 (5)
Br1—C3—C4—Br2 −2.5 (6) C29—C28—N3—C31A 79 (4)
C3—C4—C5—C6 0.9 (7) C29—C28—N3—C27 −165.4 (5)
Br2—C4—C5—C6 179.4 (3) C29—C28—N3—C31B 62 (3)
C4—C5—C6—O2 −177.6 (4) C26—C27—N3—C31A −174 (6)
C4—C5—C6—C1 1.1 (7) C26—C27—N3—C28 74.0 (7)
O1—C1—C6—O2 −2.3 (5) C26—C27—N3—C31B −147 (3)
C2—C1—C6—O2 177.0 (4) C2—C1—O1—C9 17.1 (6)
O1—C1—C6—C5 178.9 (4) C6—C1—O1—C9 −163.6 (4)
C2—C1—C6—C5 −1.8 (6) C10—C9—O1—C1 161.3 (4)
O2—C7—C8—N1 −62.9 (5) C5—C6—O2—C7 −4.6 (6)
O1—C9—C10—N2 −54.1 (5) C1—C6—O2—C7 176.7 (4)
C16—C11—C12—C13 1.4 (9) C8—C7—O2—C6 166.7 (4)
C11—C12—C13—C14 −3.7 (9) C25—N1—S1—O3 159.0 (3)
C11—C12—C13—C17 175.8 (6) C8—N1—S1—O3 −30.0 (4)
C12—C13—C14—C15 3.1 (9) C25—N1—S1—O4 28.7 (4)
C17—C13—C14—C15 −176.5 (5) C8—N1—S1—O4 −160.3 (3)
C13—C14—C15—C16 −0.1 (9) C25—N1—S1—C16 −87.3 (4)
C12—C11—C16—C15 1.6 (8) C8—N1—S1—C16 83.8 (4)
C12—C11—C16—S1 −174.5 (4) C11—C16—S1—O3 179.6 (4)
C14—C15—C16—C11 −2.2 (8) C15—C16—S1—O3 3.5 (5)
C14—C15—C16—S1 173.8 (4) C11—C16—S1—O4 −49.8 (5)
C23—C18—C19—C20 −0.7 (8) C15—C16—S1—O4 134.2 (5)
S2—C18—C19—C20 176.5 (4) C11—C16—S1—N1 65.4 (5)
C18—C19—C20—C21 −0.4 (9) C15—C16—S1—N1 −110.6 (4)
C19—C20—C21—C22 1.4 (9) C10—N2—S2—O6 −154.2 (3)
C19—C20—C21—C24 −178.7 (6) C30—N2—S2—O6 42.9 (4)
C20—C21—C22—C23 −1.2 (8) C10—N2—S2—O5 −24.7 (4)
C24—C21—C22—C23 178.8 (5) C30—N2—S2—O5 172.5 (3)
C19—C18—C23—C22 0.9 (8) C10—N2—S2—C18 90.8 (3)
S2—C18—C23—C22 −176.4 (4) C30—N2—S2—C18 −72.0 (4)
C21—C22—C23—C18 0.1 (8) C23—C18—S2—O6 −35.0 (5)
N1—C25—C26—C27 −178.9 (4) C19—C18—S2—O6 147.8 (4)
C25—C26—C27—N3 59.2 (7) C23—C18—S2—O5 −165.5 (4)
N3—C28—C29—C30 64.1 (8) C19—C18—S2—O5 17.3 (5)
C28—C29—C30—N2 −157.2 (6) C23—C18—S2—N2 79.8 (4)
C26—C25—N1—C8 78.5 (5) C19—C18—S2—N2 −97.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5401).

References

  1. Canales, J., Ramirez, J., Estiu, G. & Costamagna, J. (2000). Polyhedron, 19, 2373–2381.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Fry, F. H., Graham, B., Spiccia, L., Hockles, D. C. R. & Tiekink, E. R. T. (1997). J. Chem. Soc., Dalton Trans. pp. 827–831.
  5. Hökelek, T., Ilter, E. E. & Kılıç, Z. (2004). Anal. Sci.20, 69–70.
  6. Hökelek, T., Kaya, E. E. & Kılıç, Z. (2001). Acta Cryst. E57, o309–o311.
  7. Işik, Ş., Öztürk, S., Fun, H.-K., Agar, E. & Şaşmaz, S. (1999). Acta Cryst. C55, 1850–1852. [DOI] [PubMed]
  8. Koçak, M., Gürek, A., Gül, A. & Bekaroğlu, Ö. (1994). Eur. J. Inorg. Chem.127, 355–358.
  9. Notni, J., Görls, H. & Anders, E. (2006). Eur. J. Inorg. Chem.7, 1444–1455.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shishkina, S. V., Shishkina, O. V., Grygorash, R., Mazega, A. V., Rakipov, I. M., Yakshin, V. V., Kotlyar, S. A. & Gerbert, L. K. (2007). J. Mol. Struct.832, 199–208.
  12. Stoe & Cie (2002). X-RED32 and X-AREA Stoe & Cie, Darmstadt, Germany.
  13. Xu, X., Luo, Q., Shen, M., Huang, X. & Wu, Q. (1997). Polyhedron, 6, 1301-1305.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536810013097/hb5401sup1.cif

e-66-o1082-sup1.cif (28.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013097/hb5401Isup2.hkl

e-66-o1082-Isup2.hkl (347.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES