Abstract
In the title compound, C10H14ClN5, the imidazole and pyrimidine rings are essentially planar [maximum deviation = 0.0013 (14) and 0.0207 (13) Å, respectively]. In the crystal, the molecules are linked by weak C—H⋯N interactions into chains parallel to the c axis and the crystal packing is stabilized by additional weak C—H⋯N and C—H⋯Cl interactions.
Related literature
The title compound was prepared according to a modification of the procedure of Fiorini & Abel (1998 ▶). For the synthesis and/or biological activity of related compounds, see: Legraverend & Grierson (2006 ▶). For related structures, see: Kubicki & Codding (2001 ▶); Trávníček & Popa (2007 ▶); Rouchal et al. (2009a
▶,b
▶,c
▶).
Experimental
Crystal data
C10H14ClN5
M r = 239.71
Monoclinic,
a = 12.0483 (3) Å
b = 8.7689 (2) Å
c = 11.5538 (3) Å
β = 109.965 (3)°
V = 1147.30 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.31 mm−1
T = 120 K
0.40 × 0.40 × 0.30 mm
Data collection
Oxford Diffraction Xcalibur (Sapphire2 large Be window) diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 ▶) T min = 0.968, T max = 1.000
13393 measured reflections
2022 independent reflections
1798 reflections with I > 2σ(I)
R int = 0.016
Refinement
R[F 2 > 2σ(F 2)] = 0.025
wR(F 2) = 0.068
S = 1.05
2022 reflections
149 parameters
H-atom parameters constrained
Δρmax = 0.21 e Å−3
Δρmin = −0.18 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2009 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011797/pk2238sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011797/pk2238Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H4A⋯N1i | 0.95 | 2.49 | 3.3728 (18) | 154 |
| C7—H7C⋯Cl1ii | 0.98 | 2.91 | 3.5981 (14) | 128 |
| C7—H7B⋯N3iii | 0.98 | 2.75 | 3.584 (2) | 143 |
| C9—H9A⋯N3iv | 0.98 | 2.73 | 3.6664 (18) | 161 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
The financial support of this work by the Czech Ministry of Education, project No. MSM 7088352101 is gratefully acknowledged.
supplementary crystallographic information
Comment
The heterocyclic system, imidazo[4,5-d]pyrimidine, commonly known as purine, was first named by Emil Fisher at the turn of the 19th century. A large number of variously substituted purines exhibit a wide range of biological activities (Legraverend & Grierson, 2006). They act as interferon inducers, adenosine receptor ligands, inhibitors of microtubule assembly, protein kinases, sulfotransferases and phosphodiesterases. The title molecule was prepared as a part of our research into the synthesis of novel trisubstituted purines.
The asymmetric unit of the title compound consists of a single purine molecule. Both imidazole and pyrimidine rings are nearly planar with maximum deviations from the mean plane being 0.0013 (14) Å for C4 (imidazole ring) and 0.0207 (13) Å for C2 (pyrimidine ring). Both carbon atoms of the dimethylamino substituent lie essentially in the pyrimidine mean plane as demonstrated by torsion angles C3—C2—N5—C7 and C3—C2—N5—C6, which are 4.3 (2)° and 175.90 (13)°, respectively. The torsion angle describing the orientation of isopropyl and purine ring, H8A—C8—N4—C4 is -163.55 (13)°. Molecules are linked into chains along the c axis by weak C4—H4···N1 interactions (Table 1, Fig. 2). Crystal packing is further stabilised by short C—H···N and C—H···Cl contacts (Table 1).
Experimental
The title compound was prepared according to a slightly modified literature procedure (Fiorini & Abel, 1998). 2,6-Dichloro-9-(propan-2-yl)-9H-purine (0.87 mmol, 196 mg) and methylamine hydrochloride (0.91 mmol, 61.5 mg) were dissolved in a mixture of DMF (2.5 ml) and N-ethyl-N-isopropylpropan-2-amine (1.74 mmol, 225 mg). The resulting solution was stirred at 90 °C for 2 hours. Subsequently, the mixture was diluted with water and extracted with diethyl ether. Combined organic layers were washed twice with brine and dried over Na2SO4. Crude product consisting of two compounds with relative abundances of 43% and 57% according to GC were obtained after evaporation of the solvent in vacuum. The products were identified as N-methyl and N,N-dimethyl derivatives. Column chromatography (silica gel; petroleum ether/ethyl acetate, v/v, 1/1) yielded the latter as a colourless crystalline powder (105 mg, 54%, mp 418–422 K). The crystal used for data collection was grown by spontaneous evaporation from deuterochloroform at room temperature.
Figures
Fig. 1.
An ellipsoid plot (50% probability) of the asymmetric unit. Hydrogen atoms are represented as arbitrary spheres.
Fig. 2.
A view of the crystal structure showing chains parallel to the a-axis linked via C—H···N contacts (dotted lines). H-atoms (except those which are involved in H-bonding) have been omitted for clarity.
Crystal data
| C10H14ClN5 | F(000) = 504 |
| Mr = 239.71 | Dx = 1.388 Mg m−3 |
| Monoclinic, P21/c | Melting point = 422–418 K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.7107 Å |
| a = 12.0483 (3) Å | Cell parameters from 8720 reflections |
| b = 8.7689 (2) Å | θ = 2.9–27.3° |
| c = 11.5538 (3) Å | µ = 0.31 mm−1 |
| β = 109.965 (3)° | T = 120 K |
| V = 1147.30 (5) Å3 | Block, colourless |
| Z = 4 | 0.40 × 0.40 × 0.30 mm |
Data collection
| Oxford Diffraction Xcalibur (Sapphire2 large Be window) diffractometer | 2022 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1798 reflections with I > 2σ(I) |
| graphite | Rint = 0.016 |
| Detector resolution: 8.4 pixels mm-1 | θmax = 25.0°, θmin = 2.9° |
| ω scans | h = −14→13 |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | k = −9→10 |
| Tmin = 0.968, Tmax = 1.000 | l = −13→13 |
| 13393 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.068 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.4207P] where P = (Fo2 + 2Fc2)/3 |
| 2022 reflections | (Δ/σ)max < 0.001 |
| 149 parameters | Δρmax = 0.21 e Å−3 |
| 0 restraints | Δρmin = −0.18 e Å−3 |
Special details
| Experimental. CrysAlis RED (Oxford Diffraction Ltd, 2009). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.78721 (3) | 0.18146 (4) | 0.33908 (3) | 0.02432 (12) | |
| N1 | 0.80758 (9) | −0.04481 (12) | 0.48883 (9) | 0.0166 (2) | |
| N2 | 0.67313 (9) | 0.15775 (12) | 0.49228 (10) | 0.0179 (3) | |
| N3 | 0.69089 (10) | −0.14494 (13) | 0.72589 (10) | 0.0225 (3) | |
| N4 | 0.82037 (10) | −0.23853 (13) | 0.64258 (10) | 0.0184 (3) | |
| N5 | 0.55582 (10) | 0.16106 (13) | 0.61327 (10) | 0.0197 (3) | |
| C1 | 0.75175 (11) | 0.08580 (15) | 0.45552 (11) | 0.0168 (3) | |
| C2 | 0.63956 (11) | 0.09009 (15) | 0.58130 (11) | 0.0169 (3) | |
| C3 | 0.69562 (11) | −0.04950 (15) | 0.63134 (11) | 0.0167 (3) | |
| C4 | 0.76612 (12) | −0.25408 (16) | 0.72857 (13) | 0.0229 (3) | |
| H4A | 0.7816 | −0.3366 | 0.7851 | 0.027* | |
| C5 | 0.77572 (11) | −0.10713 (15) | 0.57988 (11) | 0.0157 (3) | |
| C6 | 0.51096 (13) | 0.30962 (16) | 0.56040 (14) | 0.0256 (3) | |
| H6A | 0.4933 | 0.3068 | 0.4711 | 0.038* | |
| H6B | 0.5707 | 0.3880 | 0.5968 | 0.038* | |
| H6C | 0.4388 | 0.3337 | 0.5778 | 0.038* | |
| C7 | 0.51768 (12) | 0.10497 (17) | 0.71274 (13) | 0.0248 (3) | |
| H7A | 0.5191 | −0.0068 | 0.7134 | 0.037* | |
| H7B | 0.4372 | 0.1406 | 0.6998 | 0.037* | |
| H7C | 0.5711 | 0.1435 | 0.7917 | 0.037* | |
| C8 | 0.90697 (12) | −0.34193 (16) | 0.61883 (13) | 0.0214 (3) | |
| H8A | 0.9468 | −0.2849 | 0.5691 | 0.026* | |
| C9 | 0.84438 (14) | −0.47859 (18) | 0.54375 (14) | 0.0314 (4) | |
| H9A | 0.7866 | −0.4433 | 0.4660 | 0.047* | |
| H9B | 0.8038 | −0.5358 | 0.5904 | 0.047* | |
| H9C | 0.9024 | −0.5447 | 0.5265 | 0.047* | |
| C10 | 1.00104 (13) | −0.38877 (18) | 0.73954 (14) | 0.0294 (3) | |
| H10A | 1.0359 | −0.2974 | 0.7868 | 0.044* | |
| H10B | 1.0627 | −0.4476 | 0.7221 | 0.044* | |
| H10C | 0.9650 | −0.4515 | 0.7874 | 0.044* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0311 (2) | 0.0225 (2) | 0.02385 (19) | 0.00422 (14) | 0.01520 (15) | 0.00769 (13) |
| N1 | 0.0180 (5) | 0.0170 (6) | 0.0149 (5) | −0.0002 (4) | 0.0058 (4) | 0.0005 (4) |
| N2 | 0.0189 (6) | 0.0173 (6) | 0.0176 (5) | 0.0002 (4) | 0.0062 (4) | −0.0005 (4) |
| N3 | 0.0256 (6) | 0.0227 (6) | 0.0219 (6) | 0.0007 (5) | 0.0115 (5) | 0.0038 (5) |
| N4 | 0.0198 (6) | 0.0168 (6) | 0.0189 (6) | 0.0020 (4) | 0.0071 (5) | 0.0037 (5) |
| N5 | 0.0196 (6) | 0.0200 (6) | 0.0204 (6) | 0.0021 (5) | 0.0081 (5) | −0.0020 (5) |
| C1 | 0.0192 (7) | 0.0170 (7) | 0.0136 (6) | −0.0023 (5) | 0.0046 (5) | −0.0003 (5) |
| C2 | 0.0162 (6) | 0.0174 (7) | 0.0152 (6) | −0.0031 (5) | 0.0031 (5) | −0.0048 (5) |
| C3 | 0.0169 (6) | 0.0174 (7) | 0.0155 (6) | −0.0025 (5) | 0.0049 (5) | −0.0019 (5) |
| C4 | 0.0267 (7) | 0.0221 (8) | 0.0219 (7) | 0.0014 (6) | 0.0109 (6) | 0.0067 (6) |
| C5 | 0.0149 (6) | 0.0153 (7) | 0.0149 (6) | −0.0017 (5) | 0.0025 (5) | −0.0016 (5) |
| C6 | 0.0264 (7) | 0.0228 (8) | 0.0280 (8) | 0.0070 (6) | 0.0097 (6) | −0.0013 (6) |
| C7 | 0.0231 (7) | 0.0284 (8) | 0.0276 (7) | −0.0006 (6) | 0.0148 (6) | −0.0038 (6) |
| C8 | 0.0202 (7) | 0.0212 (7) | 0.0250 (7) | 0.0051 (6) | 0.0105 (6) | 0.0055 (6) |
| C9 | 0.0347 (9) | 0.0262 (8) | 0.0329 (8) | 0.0061 (7) | 0.0110 (7) | −0.0036 (7) |
| C10 | 0.0225 (7) | 0.0306 (8) | 0.0326 (8) | 0.0044 (6) | 0.0064 (6) | 0.0094 (7) |
Geometric parameters (Å, °)
| Cl1—C1 | 1.7575 (13) | C6—H6A | 0.9800 |
| N1—C1 | 1.3174 (17) | C6—H6B | 0.9800 |
| N1—C5 | 1.3522 (17) | C6—H6C | 0.9800 |
| N2—C1 | 1.3230 (17) | C7—H7A | 0.9800 |
| N2—C2 | 1.3630 (17) | C7—H7B | 0.9800 |
| N3—C4 | 1.3112 (18) | C7—H7C | 0.9800 |
| N3—C3 | 1.3926 (17) | C8—C9 | 1.520 (2) |
| N4—C5 | 1.3696 (17) | C8—C10 | 1.5228 (19) |
| N4—C4 | 1.3698 (18) | C8—H8A | 1.0000 |
| N4—C8 | 1.4769 (17) | C9—H9A | 0.9800 |
| N5—C2 | 1.3402 (17) | C9—H9B | 0.9800 |
| N5—C7 | 1.4610 (18) | C9—H9C | 0.9800 |
| N5—C6 | 1.4618 (18) | C10—H10A | 0.9800 |
| C2—C3 | 1.4220 (19) | C10—H10B | 0.9800 |
| C3—C5 | 1.3900 (18) | C10—H10C | 0.9800 |
| C4—H4A | 0.9500 | ||
| C1—N1—C5 | 109.04 (11) | N5—C6—H6C | 109.5 |
| C1—N2—C2 | 117.66 (11) | H6A—C6—H6C | 109.5 |
| C4—N3—C3 | 104.13 (11) | H6B—C6—H6C | 109.5 |
| C5—N4—C4 | 105.59 (11) | N5—C7—H7A | 109.5 |
| C5—N4—C8 | 126.37 (11) | N5—C7—H7B | 109.5 |
| C4—N4—C8 | 128.02 (11) | H7A—C7—H7B | 109.5 |
| C2—N5—C7 | 121.94 (11) | N5—C7—H7C | 109.5 |
| C2—N5—C6 | 120.29 (11) | H7A—C7—H7C | 109.5 |
| C7—N5—C6 | 117.26 (11) | H7B—C7—H7C | 109.5 |
| N1—C1—N2 | 132.14 (12) | N4—C8—C9 | 110.23 (11) |
| N1—C1—Cl1 | 113.90 (10) | N4—C8—C10 | 110.34 (11) |
| N2—C1—Cl1 | 113.95 (10) | C9—C8—C10 | 112.28 (12) |
| N5—C2—N2 | 116.82 (12) | N4—C8—H8A | 107.9 |
| N5—C2—C3 | 125.83 (12) | C9—C8—H8A | 107.9 |
| N2—C2—C3 | 117.35 (11) | C10—C8—H8A | 107.9 |
| C5—C3—N3 | 109.72 (11) | C8—C9—H9A | 109.5 |
| C5—C3—C2 | 116.22 (12) | C8—C9—H9B | 109.5 |
| N3—C3—C2 | 134.05 (12) | H9A—C9—H9B | 109.5 |
| N3—C4—N4 | 114.04 (12) | C8—C9—H9C | 109.5 |
| N3—C4—H4A | 123.0 | H9A—C9—H9C | 109.5 |
| N4—C4—H4A | 123.0 | H9B—C9—H9C | 109.5 |
| N1—C5—N4 | 125.94 (12) | C8—C10—H10A | 109.5 |
| N1—C5—C3 | 127.51 (12) | C8—C10—H10B | 109.5 |
| N4—C5—C3 | 106.52 (11) | H10A—C10—H10B | 109.5 |
| N5—C6—H6A | 109.5 | C8—C10—H10C | 109.5 |
| N5—C6—H6B | 109.5 | H10A—C10—H10C | 109.5 |
| H6A—C6—H6B | 109.5 | H10B—C10—H10C | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H4A···N1i | 0.95 | 2.49 | 3.3728 (18) | 154 |
| C7—H7C···Cl1ii | 0.98 | 2.91 | 3.5981 (14) | 128 |
| C7—H7B···N3iii | 0.98 | 2.75 | 3.584 (2) | 143 |
| C9—H9A···N3iv | 0.98 | 2.73 | 3.6664 (18) | 161 |
Symmetry codes: (i) x, −y−1/2, z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y−1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2238).
References
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Fiorini, M. T. & Abel, Ch. (1998). Tetrahedron Lett.39, 1827–1830.
- Kubicki, M. & Codding, P. W. (2001). Acta Cryst. E57, o332–o334. [DOI] [PubMed]
- Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem.14, 3987–4006. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
- Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Yarnton, England.
- Rouchal, M., Nečas, M., de Carvalho, F. P. & Vícha, R. (2009a). Acta Cryst. E65, o298–o299. [DOI] [PMC free article] [PubMed]
- Rouchal, M., Nečas, M. & Vícha, R. (2009b). Acta Cryst. E65, o1268. [DOI] [PMC free article] [PubMed]
- Rouchal, M., Nečas, M. & Vícha, R. (2009c). Acta Cryst. E65, o1676. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Trávníček, Z. & Popa, I. (2007). Acta Cryst. E63, o728–o730.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011797/pk2238sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011797/pk2238Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


