Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):m570. doi: 10.1107/S1600536810014443

Dichlorido{4-cyclo­hexyl-1-[1-(2-pyridyl-κN)ethyl­idene]thio­semicarbazidato-κ2 N 1,S}methyl­tin(IV)

Md Abdus Salam a, Md Abu Affan a, Mustaffa Shamsuddin a, Seik Weng Ng b,*
PMCID: PMC2979086  PMID: 21579051

Abstract

The monodeprotonated Schiff base ligand in the title compound, [Sn(CH3)(C14H19N4S)Cl2], N,N′,S-chelates to the Sn atom, which is six-coordinated in an octa­hedral environment. The three coordinating atoms along with the methyl C atom comprise a square plane, above and below which are positioned the Cl atoms. The amino group is a hydrogen-bond donor to a Cl atom of an adjacent mol­ecule, the hydrogen bond giving rise to a helical chain extending parallel to [100].

Related literature

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004); Kovala-Demertzi et al. (2007).graphic file with name e-66-0m570-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)(C14H19N4S)Cl2]

  • M r = 480.02

  • Orthorhombic, Inline graphic

  • a = 9.2016 (5) Å

  • b = 12.2434 (7) Å

  • c = 17.4544 (10) Å

  • V = 1966.39 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.633, T max = 0.730

  • 18838 measured reflections

  • 4498 independent reflections

  • 4223 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.054

  • S = 1.02

  • 4498 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 1493 Friedel pairs

  • Flack parameter: −0.020 (17)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014443/bt5250sup1.cif

e-66-0m570-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014443/bt5250Isup2.hkl

e-66-0m570-Isup2.hkl (220.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—C1 2.136 (3)
Sn1—N1 2.269 (2)
Sn1—N2 2.224 (2)
Sn1—S1 2.4814 (7)
Sn1—Cl1 2.4960 (7)
Sn1—Cl2 2.4701 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl1i 0.86 (1) 2.36 (1) 3.219 (3) 177 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank MOSTI (grant No. 06-01-09-SF0046), Universiti Malaysia Sarawak and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The mono-deprotonated anion of 2-acetylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogues have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(CH3)(C14H19N4S) N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the methyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

Experimental

2-Acetylpyridine 4-cyclohexyl thiosemicarbazone was synthesized by using a literature method (Joseph et al., 2004). The compound (0.28 g, 1 mmol) was dissolved in dry methanol (10 ml) in a Schlenk apparatus under a nitrogen atmosphere. Methyltin trichoride (0.24 g, 1 mmol) dissolved in methanol (10 ml) was added. The mixture was heated for an hour. The solvent was removed and the yellow compound recrystallized from chloroform/methanol (1:1) in 70% yield, m.p. 551-553 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.978 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N–H 0.84±0.01 Å.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(CH3)(C14H19N4S) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(CH3)(C14H19N4S)Cl2] F(000) = 960
Mr = 480.02 Dx = 1.621 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8827 reflections
a = 9.2016 (5) Å θ = 2.3–27.7°
b = 12.2434 (7) Å µ = 1.68 mm1
c = 17.4544 (10) Å T = 293 K
V = 1966.39 (19) Å3 Prism, yellow
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer 4498 independent reflections
Radiation source: fine-focus sealed tube 4223 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.633, Tmax = 0.730 k = −15→15
18838 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.032P)2 + 0.1524P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4498 reflections Δρmax = 0.29 e Å3
214 parameters Δρmin = −0.41 e Å3
1 restraint Absolute structure: Flack (1983), 1493 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.020 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 1.061930 (18) 0.634199 (13) 0.160119 (10) 0.03748 (6)
Cl1 0.97585 (8) 0.54078 (6) 0.04139 (4) 0.04922 (17)
Cl2 1.10680 (12) 0.73379 (8) 0.28090 (5) 0.0724 (3)
S1 1.22890 (7) 0.75142 (6) 0.08461 (5) 0.04529 (16)
N1 0.8388 (3) 0.59846 (18) 0.20943 (13) 0.0411 (5)
N2 0.9157 (2) 0.77150 (16) 0.12825 (11) 0.0351 (5)
N3 0.9636 (2) 0.85860 (18) 0.08811 (12) 0.0398 (5)
N4 1.1533 (3) 0.9409 (2) 0.02881 (19) 0.0602 (7)
H4 1.2404 (17) 0.944 (3) 0.0111 (18) 0.063 (11)*
C1 1.1749 (4) 0.4916 (3) 0.1978 (2) 0.0687 (10)
H1A 1.1755 0.4893 0.2527 0.103*
H1B 1.2731 0.4936 0.1792 0.103*
H1C 1.1270 0.4277 0.1783 0.103*
C2 0.8073 (4) 0.5114 (2) 0.25205 (17) 0.0524 (7)
H2 0.8783 0.4586 0.2602 0.063*
C3 0.6713 (4) 0.4978 (3) 0.28448 (19) 0.0599 (9)
H3 0.6513 0.4370 0.3146 0.072*
C4 0.5676 (4) 0.5746 (3) 0.27171 (17) 0.0589 (8)
H4A 0.4761 0.5675 0.2938 0.071*
C5 0.5985 (3) 0.6628 (2) 0.22600 (16) 0.0490 (7)
H5 0.5271 0.7146 0.2157 0.059*
C6 0.7362 (3) 0.6743 (2) 0.19527 (14) 0.0372 (6)
C7 0.7802 (3) 0.7679 (2) 0.14765 (14) 0.0363 (5)
C8 0.6739 (3) 0.8530 (3) 0.12494 (18) 0.0517 (7)
H8A 0.7240 0.9121 0.1002 0.077*
H8B 0.6249 0.8799 0.1697 0.077*
H8C 0.6042 0.8222 0.0902 0.077*
C9 1.1021 (3) 0.8555 (2) 0.06741 (14) 0.0400 (6)
C10 1.0719 (4) 1.0403 (2) 0.0096 (2) 0.0595 (8)
H10 0.9725 1.0328 0.0290 0.071*
C11 1.1403 (6) 1.1369 (3) 0.0467 (2) 0.0941 (16)
H11A 1.2421 1.1404 0.0324 0.113*
H11B 1.1351 1.1288 0.1019 0.113*
C12 1.0651 (7) 1.2431 (3) 0.0232 (2) 0.0936 (15)
H12A 0.9671 1.2436 0.0437 0.112*
H12B 1.1171 1.3044 0.0452 0.112*
C13 1.0586 (6) 1.2563 (3) −0.0593 (2) 0.0750 (11)
H13A 1.1561 1.2688 −0.0786 0.090*
H13B 1.0007 1.3203 −0.0712 0.090*
C14 0.9968 (8) 1.1623 (3) −0.0982 (3) 0.123 (2)
H14A 1.0086 1.1717 −0.1531 0.147*
H14B 0.8935 1.1592 −0.0875 0.147*
C15 1.0660 (8) 1.0544 (3) −0.0745 (2) 0.115 (2)
H15A 1.0109 0.9947 −0.0967 0.138*
H15B 1.1639 1.0509 −0.0950 0.138*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03555 (9) 0.03065 (8) 0.04623 (9) 0.00216 (7) −0.00566 (7) 0.00345 (7)
Cl1 0.0458 (4) 0.0469 (4) 0.0550 (4) 0.0002 (3) −0.0045 (3) −0.0088 (3)
Cl2 0.0986 (7) 0.0686 (5) 0.0500 (4) −0.0184 (5) −0.0149 (4) −0.0065 (4)
S1 0.0341 (3) 0.0362 (3) 0.0656 (4) 0.0016 (3) 0.0043 (3) 0.0044 (3)
N1 0.0436 (13) 0.0366 (11) 0.0431 (11) −0.0039 (10) −0.0010 (9) 0.0059 (9)
N2 0.0395 (12) 0.0274 (10) 0.0383 (10) 0.0034 (9) 0.0030 (9) 0.0019 (8)
N3 0.0371 (11) 0.0332 (10) 0.0491 (11) 0.0028 (10) 0.0050 (9) 0.0071 (10)
N4 0.0442 (15) 0.0431 (14) 0.093 (2) 0.0067 (11) 0.0179 (14) 0.0239 (14)
C1 0.060 (2) 0.0515 (19) 0.095 (3) 0.0150 (17) −0.021 (2) 0.0203 (18)
C2 0.061 (2) 0.0445 (16) 0.0518 (16) −0.0074 (15) −0.0060 (15) 0.0125 (13)
C3 0.067 (2) 0.058 (2) 0.0554 (17) −0.0250 (18) −0.0023 (16) 0.0152 (15)
C4 0.0554 (18) 0.067 (2) 0.0543 (16) −0.0200 (19) 0.0087 (16) 0.0020 (14)
C5 0.0451 (17) 0.0505 (17) 0.0513 (15) −0.0044 (12) 0.0106 (13) −0.0029 (12)
C6 0.0389 (14) 0.0353 (13) 0.0375 (12) −0.0017 (11) 0.0023 (11) −0.0067 (10)
C7 0.0371 (13) 0.0348 (12) 0.0371 (13) 0.0036 (10) 0.0032 (10) −0.0028 (10)
C8 0.0415 (15) 0.0502 (17) 0.0632 (16) 0.0141 (14) 0.0045 (13) 0.0060 (14)
C9 0.0426 (14) 0.0317 (13) 0.0458 (13) −0.0002 (12) 0.0011 (10) 0.0017 (11)
C10 0.0435 (15) 0.0419 (15) 0.093 (2) 0.0065 (15) 0.0162 (18) 0.0256 (15)
C11 0.159 (5) 0.059 (2) 0.064 (2) 0.046 (3) −0.036 (3) −0.0167 (19)
C12 0.154 (4) 0.052 (2) 0.075 (2) 0.032 (3) −0.021 (3) −0.0103 (19)
C13 0.092 (3) 0.0485 (18) 0.085 (2) 0.013 (2) 0.013 (2) 0.0252 (17)
C14 0.214 (7) 0.071 (3) 0.083 (3) 0.057 (3) −0.064 (4) −0.008 (2)
C15 0.197 (6) 0.058 (2) 0.090 (3) 0.049 (3) −0.067 (4) −0.022 (2)

Geometric parameters (Å, °)

Sn1—C1 2.136 (3) C5—C6 1.383 (4)
Sn1—N1 2.269 (2) C5—H5 0.9300
Sn1—N2 2.224 (2) C6—C7 1.473 (4)
Sn1—S1 2.4814 (7) C7—C8 1.483 (4)
Sn1—Cl1 2.4960 (7) C8—H8A 0.9600
Sn1—Cl2 2.4701 (8) C8—H8B 0.9600
S1—C9 1.753 (3) C8—H8C 0.9600
N1—C2 1.332 (4) C10—C15 1.479 (5)
N1—C6 1.348 (3) C10—C11 1.488 (6)
N2—C7 1.292 (3) C10—H10 0.9800
N2—N3 1.350 (3) C11—C12 1.529 (5)
N3—C9 1.326 (3) C11—H11A 0.9700
N4—C9 1.330 (4) C11—H11B 0.9700
N4—C10 1.468 (4) C12—C13 1.450 (5)
N4—H4 0.861 (10) C12—H12A 0.9700
C1—H1A 0.9600 C12—H12B 0.9700
C1—H1B 0.9600 C13—C14 1.453 (6)
C1—H1C 0.9600 C13—H13A 0.9700
C2—C3 1.383 (5) C13—H13B 0.9700
C2—H2 0.9300 C14—C15 1.523 (5)
C3—C4 1.359 (5) C14—H14A 0.9700
C3—H3 0.9300 C14—H14B 0.9700
C4—C5 1.372 (4) C15—H15A 0.9700
C4—H4A 0.9300 C15—H15B 0.9700
C1—Sn1—N2 171.66 (12) N2—C7—C8 122.8 (2)
C1—Sn1—N1 99.56 (12) C6—C7—C8 121.1 (2)
N2—Sn1—N1 72.12 (8) C7—C8—H8A 109.5
C1—Sn1—Cl2 93.43 (11) C7—C8—H8B 109.5
N2—Sn1—Cl2 86.65 (6) H8A—C8—H8B 109.5
N1—Sn1—Cl2 85.57 (6) C7—C8—H8C 109.5
C1—Sn1—S1 109.56 (11) H8A—C8—H8C 109.5
N2—Sn1—S1 78.74 (6) H8B—C8—H8C 109.5
N1—Sn1—S1 150.85 (6) N3—C9—N4 117.1 (3)
Cl2—Sn1—S1 93.69 (3) N3—C9—S1 127.9 (2)
C1—Sn1—Cl1 92.01 (11) N4—C9—S1 115.0 (2)
N2—Sn1—Cl1 86.94 (6) N4—C10—C15 110.0 (3)
N1—Sn1—Cl1 86.53 (6) N4—C10—C11 110.1 (3)
Cl2—Sn1—Cl1 171.05 (3) C15—C10—C11 110.8 (3)
S1—Sn1—Cl1 91.18 (3) N4—C10—H10 108.6
C9—S1—Sn1 95.70 (9) C15—C10—H10 108.6
C2—N1—C6 120.1 (3) C11—C10—H10 108.6
C2—N1—Sn1 124.3 (2) C10—C11—C12 111.5 (3)
C6—N1—Sn1 115.58 (17) C10—C11—H11A 109.3
C7—N2—N3 118.5 (2) C12—C11—H11A 109.3
C7—N2—Sn1 119.51 (17) C10—C11—H11B 109.3
N3—N2—Sn1 121.94 (16) C12—C11—H11B 109.3
C9—N3—N2 115.7 (2) H11A—C11—H11B 108.0
C9—N4—C10 126.0 (3) C13—C12—C11 112.3 (3)
C9—N4—H4 123 (2) C13—C12—H12A 109.1
C10—N4—H4 111 (2) C11—C12—H12A 109.1
Sn1—C1—H1A 109.5 C13—C12—H12B 109.1
Sn1—C1—H1B 109.5 C11—C12—H12B 109.1
H1A—C1—H1B 109.5 H12A—C12—H12B 107.9
Sn1—C1—H1C 109.5 C12—C13—C14 113.1 (4)
H1A—C1—H1C 109.5 C12—C13—H13A 109.0
H1B—C1—H1C 109.5 C14—C13—H13A 109.0
N1—C2—C3 121.5 (3) C12—C13—H13B 109.0
N1—C2—H2 119.3 C14—C13—H13B 109.0
C3—C2—H2 119.3 H13A—C13—H13B 107.8
C4—C3—C2 119.0 (3) C13—C14—C15 113.3 (4)
C4—C3—H3 120.5 C13—C14—H14A 108.9
C2—C3—H3 120.5 C15—C14—H14A 108.9
C3—C4—C5 119.6 (3) C13—C14—H14B 108.9
C3—C4—H4A 120.2 C15—C14—H14B 108.9
C5—C4—H4A 120.2 H14A—C14—H14B 107.7
C4—C5—C6 119.7 (3) C10—C15—C14 112.7 (4)
C4—C5—H5 120.1 C10—C15—H15A 109.0
C6—C5—H5 120.1 C14—C15—H15A 109.0
N1—C6—C5 120.1 (2) C10—C15—H15B 109.0
N1—C6—C7 116.6 (2) C14—C15—H15B 109.0
C5—C6—C7 123.4 (2) H15A—C15—H15B 107.8
N2—C7—C6 116.1 (2)
C1—Sn1—S1—C9 −178.73 (15) C3—C4—C5—C6 −1.9 (5)
N2—Sn1—S1—C9 2.07 (10) C2—N1—C6—C5 1.0 (4)
N1—Sn1—S1—C9 3.74 (16) Sn1—N1—C6—C5 −176.8 (2)
Cl2—Sn1—S1—C9 −83.77 (9) C2—N1—C6—C7 180.0 (2)
Cl1—Sn1—S1—C9 88.72 (9) Sn1—N1—C6—C7 2.1 (3)
C1—Sn1—N1—C2 2.9 (3) C4—C5—C6—N1 0.8 (4)
N2—Sn1—N1—C2 −177.8 (2) C4—C5—C6—C7 −178.0 (3)
Cl2—Sn1—N1—C2 −89.9 (2) N3—N2—C7—C6 −176.5 (2)
S1—Sn1—N1—C2 −179.50 (18) Sn1—N2—C7—C6 4.4 (3)
Cl1—Sn1—N1—C2 94.3 (2) N3—N2—C7—C8 2.6 (4)
C1—Sn1—N1—C6 −179.4 (2) Sn1—N2—C7—C8 −176.5 (2)
N2—Sn1—N1—C6 −0.01 (17) N1—C6—C7—N2 −4.3 (3)
Cl2—Sn1—N1—C6 87.89 (18) C5—C6—C7—N2 174.6 (2)
S1—Sn1—N1—C6 −1.7 (3) N1—C6—C7—C8 176.6 (2)
Cl1—Sn1—N1—C6 −87.92 (18) C5—C6—C7—C8 −4.5 (4)
C1—Sn1—N2—C7 1.9 (9) N2—N3—C9—N4 −179.0 (3)
N1—Sn1—N2—C7 −2.46 (18) N2—N3—C9—S1 1.1 (3)
Cl2—Sn1—N2—C7 −88.88 (19) C10—N4—C9—N3 2.6 (5)
S1—Sn1—N2—C7 176.68 (19) C10—N4—C9—S1 −177.5 (3)
Cl1—Sn1—N2—C7 84.87 (19) Sn1—S1—C9—N3 −2.6 (3)
C1—Sn1—N2—N3 −177.3 (8) Sn1—S1—C9—N4 177.5 (2)
N1—Sn1—N2—N3 178.4 (2) C9—N4—C10—C15 −120.0 (5)
Cl2—Sn1—N2—N3 91.99 (17) C9—N4—C10—C11 117.6 (4)
S1—Sn1—N2—N3 −2.45 (17) N4—C10—C11—C12 175.8 (4)
Cl1—Sn1—N2—N3 −94.26 (17) C15—C10—C11—C12 53.9 (6)
C7—N2—N3—C9 −177.5 (2) C10—C11—C12—C13 −54.4 (7)
Sn1—N2—N3—C9 1.6 (3) C11—C12—C13—C14 52.4 (7)
C6—N1—C2—C3 −1.8 (4) C12—C13—C14—C15 −50.4 (8)
Sn1—N1—C2—C3 175.8 (2) N4—C10—C15—C14 −174.0 (5)
N1—C2—C3—C4 0.7 (5) C11—C10—C15—C14 −52.0 (7)
C2—C3—C4—C5 1.2 (5) C13—C14—C15—C10 50.5 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···Cl1i 0.86 (1) 2.36 (1) 3.219 (3) 177 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5250).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.
  5. Kovala-Demertzi, D., Galani, A., Kourkoumelis, N., Miller, J. R. & Demertzis, M. A. (2007). Polyhedron, 26, 2871–2879.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014443/bt5250sup1.cif

e-66-0m570-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014443/bt5250Isup2.hkl

e-66-0m570-Isup2.hkl (220.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES