Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 21;66(Pt 5):o1122. doi: 10.1107/S1600536810012456

(1H-1,2,4-Triazol-1-yl)methyl 2-(2,4-dichloro­phen­oxy)acetate

Yun-Man Xie a,*, Yu-Min Li a
PMCID: PMC2979088  PMID: 21579172

Abstract

In the title compound, C11H9Cl2N3O3, the triazole and benzene rings are roughly parallel to one another [dihedral angle = 4.99 (2)°] because the C—O—C—C—O chain that links the two rings is folded [O—C—C—O = 8.60 (2)°] rather than fully extended. In the crystal, weak inter­molecular C—H⋯N and C—H⋯O inter­actions are present, and π–π inter­actions are indicated by the short distances [3.749 (3) Å] between the centroids of the triazole and benzene rings.

Related literature

For details of the biological activities of triazole-containing compounds, see: Xu et al. (2002). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1122-scheme1.jpg

Experimental

Crystal data

  • C11H9Cl2N3O3

  • M r = 302.11

  • Monoclinic, Inline graphic

  • a = 10.814 (2) Å

  • b = 6.4514 (13) Å

  • c = 18.698 (4) Å

  • β = 101.05 (3)°

  • V = 1280.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.74 × 0.22 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.702, T max = 0.976

  • 2253 measured reflections

  • 2253 independent reflections

  • 1816 reflections with I > 2σ(I)

  • R int = 0.000

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.02

  • 2253 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012456/hg2669sup1.cif

e-66-o1122-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012456/hg2669Isup2.hkl

e-66-o1122-Isup2.hkl (110.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the triazole ring (C10/C11/N1–N3) and the benzene ring (C1–C6), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N3i 0.93 2.45 3.353 (3) 164
C7—H7B⋯O1ii 0.97 2.58 3.390 (2) 142
C9—H9A⋯O2iii 0.97 2.52 3.381 (3) 148
C11—H11A⋯O2iii 0.93 2.54 3.293 (2) 139
Cg1⋯Cg2i     3.665 (2)  

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Compounds containing the triazole ring system are well known as efficient fungicides in agriculture, where they act by inhibiting the biosynthesis of ergosterol (Xu et al., 2002). In order to search for new triazole compounds with higher bioactivity, the title compound was synthesized and its structure is reported here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987). Triazole ring (C10/C11/N1—N3) and benzene ring (C1—C6) are essentially parallel to one another (dihedral angle of 4.99 (2)°) because the C—O—C—C—O chain that links the two rings is folded [O—C—C—O torsion angle = 8.60 (2)°] rather than fully extended. π—π interactions are indicated by the short distance (Cg1···Cg1 distance of 3.749 (3) Å, symmetry code: 1-x,-y,-z) between the centroids of the triazole rings (C10/C11/N1—N3) (Cg1) and benzene rings C1—C6 (Cg2) (Table 1). There are weaker C—H···N, C—H···O intermolecular interactions, which stabilized the structure (Table 1).

Experimental

To a 100 ml flask were added 10 mmol of (1H-1,2,4-triazol-1-yl)methanol and 11 mmol of triethylamine in 20 ml of dryed acetone, to which 10 mmol of 2-(2,4-dichlorophenoxy)acetyl chloride in 10 ml of acetone was then dropwise added with stirring on ice-cold water bath within 0.5 h. The reaction took place immediately, and a lot of white solid appeared. The mixture was heated and refluxed for 2 h, and then cooled to room temperature. After filtering and distilling in reduced pressure, a crude product was obtained and purified by flash column chromatography (silicagel, using ethyl ethanoate: cyclohexane = 1:3 as eluent) to afford the title compound. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C11H9Cl2N3O3 F(000) = 616
Mr = 302.11 Dx = 1.567 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11868 reflections
a = 10.814 (2) Å θ = 1.9–27.4°
b = 6.4514 (13) Å µ = 0.51 mm1
c = 18.698 (4) Å T = 293 K
β = 101.05 (3)° Thin platelet, colorless
V = 1280.2 (4) Å3 0.74 × 0.22 × 0.05 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer 2253 independent reflections
Radiation source: Rotating Anode 1816 reflections with I > 2σ(I)
graphite Rint = 0.0000
ω Oscillation scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = 0→12
Tmin = 0.702, Tmax = 0.976 k = 0→7
2253 measured reflections l = −22→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.0748P] where P = (Fo2 + 2Fc2)/3
2253 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.79559 (6) 0.99712 (12) 0.32117 (3) 0.0704 (2)
Cl1 1.04334 (5) 0.97477 (8) 0.09915 (3) 0.04955 (18)
O3 0.66872 (11) 0.28902 (19) −0.04910 (7) 0.0376 (3)
O2 0.66425 (13) 0.6226 (2) −0.01578 (8) 0.0476 (4)
N1 0.49666 (14) 0.1167 (2) −0.11561 (8) 0.0339 (3)
N2 0.52884 (17) 0.0126 (3) −0.17284 (9) 0.0438 (4)
N3 0.39084 (16) −0.1726 (3) −0.12151 (9) 0.0464 (4)
C1 0.87849 (16) 0.6753 (3) 0.12208 (9) 0.0344 (4)
C6 0.79694 (17) 0.5867 (3) 0.16172 (10) 0.0415 (5)
H6A 0.7583 0.4613 0.1466 0.050*
C4 0.82796 (18) 0.8697 (4) 0.24517 (10) 0.0425 (5)
C5 0.77190 (18) 0.6821 (4) 0.22373 (10) 0.0451 (5)
H5A 0.7179 0.6202 0.2506 0.054*
C3 0.91140 (18) 0.9612 (3) 0.20703 (10) 0.0399 (5)
H3B 0.9496 1.0869 0.2223 0.048*
C2 0.93678 (16) 0.8624 (3) 0.14596 (9) 0.0347 (4)
O1 0.90954 (12) 0.5941 (2) 0.06039 (7) 0.0449 (4)
C7 0.84682 (18) 0.4108 (3) 0.02987 (11) 0.0427 (5)
H7A 0.8396 0.3144 0.0687 0.051*
H7B 0.8964 0.3449 −0.0018 0.051*
C8 0.71716 (17) 0.4595 (3) −0.01307 (9) 0.0340 (4)
C9 0.54632 (17) 0.3176 (3) −0.09501 (10) 0.0385 (4)
H9A 0.4909 0.3915 −0.0687 0.046*
H9B 0.5539 0.3974 −0.1379 0.046*
C11 0.41456 (18) 0.0036 (3) −0.08681 (11) 0.0388 (4)
H11A 0.3792 0.0446 −0.0475 0.047*
C10 0.4627 (2) −0.1587 (3) −0.17314 (11) 0.0470 (5)
H10A 0.4651 −0.2639 −0.2068 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0569 (4) 0.1092 (5) 0.0496 (3) −0.0030 (3) 0.0214 (3) −0.0367 (3)
Cl1 0.0582 (3) 0.0474 (3) 0.0477 (3) −0.0075 (2) 0.0221 (2) −0.0001 (2)
O3 0.0317 (7) 0.0377 (7) 0.0426 (7) −0.0016 (6) 0.0049 (5) −0.0078 (6)
O2 0.0464 (8) 0.0405 (8) 0.0541 (8) 0.0036 (7) 0.0049 (6) −0.0140 (7)
N1 0.0339 (8) 0.0340 (8) 0.0343 (8) −0.0040 (7) 0.0081 (6) −0.0048 (7)
N2 0.0538 (10) 0.0439 (9) 0.0368 (9) −0.0011 (8) 0.0166 (7) −0.0047 (7)
N3 0.0482 (10) 0.0400 (9) 0.0501 (10) −0.0091 (8) 0.0077 (8) −0.0015 (8)
C1 0.0277 (9) 0.0454 (10) 0.0295 (9) 0.0023 (8) 0.0040 (7) −0.0079 (8)
C6 0.0319 (10) 0.0476 (11) 0.0447 (11) −0.0079 (9) 0.0063 (8) −0.0108 (9)
C4 0.0337 (10) 0.0625 (13) 0.0319 (9) 0.0053 (9) 0.0077 (7) −0.0116 (9)
C5 0.0304 (10) 0.0656 (13) 0.0406 (10) −0.0045 (9) 0.0107 (8) −0.0032 (10)
C3 0.0365 (10) 0.0439 (11) 0.0379 (10) 0.0012 (8) 0.0037 (8) −0.0105 (8)
C2 0.0309 (9) 0.0391 (10) 0.0336 (9) 0.0012 (8) 0.0053 (7) −0.0015 (8)
O1 0.0374 (7) 0.0564 (8) 0.0436 (7) −0.0089 (7) 0.0145 (6) −0.0223 (7)
C7 0.0360 (10) 0.0464 (11) 0.0457 (11) −0.0004 (9) 0.0075 (8) −0.0202 (9)
C8 0.0350 (10) 0.0394 (10) 0.0312 (9) −0.0045 (8) 0.0155 (7) −0.0090 (8)
C9 0.0328 (10) 0.0351 (9) 0.0468 (11) −0.0031 (8) 0.0058 (8) −0.0030 (8)
C11 0.0361 (10) 0.0435 (10) 0.0380 (10) −0.0053 (8) 0.0108 (8) −0.0006 (8)
C10 0.0603 (13) 0.0379 (10) 0.0420 (11) −0.0002 (10) 0.0074 (9) −0.0081 (9)

Geometric parameters (Å, °)

Cl2—C4 1.7346 (19) C6—H6A 0.9300
Cl1—C2 1.7336 (19) C4—C5 1.378 (3)
O3—C8 1.343 (2) C4—C3 1.385 (3)
O3—C9 1.445 (2) C5—H5A 0.9300
O2—C8 1.194 (2) C3—C2 1.380 (3)
N1—C11 1.339 (2) C3—H3B 0.9300
N1—N2 1.364 (2) O1—C7 1.427 (2)
N1—C9 1.427 (2) C7—C8 1.509 (3)
N2—C10 1.316 (3) C7—H7A 0.9700
N3—C11 1.310 (3) C7—H7B 0.9700
N3—C10 1.353 (3) C9—H9A 0.9700
C1—O1 1.366 (2) C9—H9B 0.9700
C1—C6 1.380 (3) C11—H11A 0.9300
C1—C2 1.395 (3) C10—H10A 0.9300
C6—C5 1.384 (3)
C8—O3—C9 114.73 (14) C1—C2—Cl1 120.23 (14)
C11—N1—N2 109.61 (15) C1—O1—C7 118.73 (15)
C11—N1—C9 129.08 (16) O1—C7—C8 111.21 (16)
N2—N1—C9 121.29 (16) O1—C7—H7A 109.4
C10—N2—N1 101.33 (16) C8—C7—H7A 109.4
C11—N3—C10 102.19 (16) O1—C7—H7B 109.4
O1—C1—C6 125.49 (17) C8—C7—H7B 109.4
O1—C1—C2 115.65 (16) H7A—C7—H7B 108.0
C6—C1—C2 118.86 (17) O2—C8—O3 124.25 (16)
C1—C6—C5 120.90 (19) O2—C8—C7 126.51 (17)
C1—C6—H6A 119.5 O3—C8—C7 109.23 (15)
C5—C6—H6A 119.5 N1—C9—O3 107.39 (15)
C5—C4—C3 121.22 (17) N1—C9—H9A 110.2
C5—C4—Cl2 120.53 (16) O3—C9—H9A 110.2
C3—C4—Cl2 118.25 (16) N1—C9—H9B 110.2
C4—C5—C6 119.20 (19) O3—C9—H9B 110.2
C4—C5—H5A 120.4 H9A—C9—H9B 108.5
C6—C5—H5A 120.4 N3—C11—N1 110.84 (18)
C2—C3—C4 118.78 (18) N3—C11—H11A 124.6
C2—C3—H3B 120.6 N1—C11—H11A 124.6
C4—C3—H3B 120.6 N2—C10—N3 116.03 (17)
C3—C2—C1 121.00 (18) N2—C10—H10A 122.0
C3—C2—Cl1 118.77 (15) N3—C10—H10A 122.0
C11—N1—N2—C10 −0.5 (2) C6—C1—O1—C7 5.1 (3)
C9—N1—N2—C10 −179.25 (16) C2—C1—O1—C7 −175.59 (16)
O1—C1—C6—C5 179.94 (17) C1—O1—C7—C8 78.8 (2)
C2—C1—C6—C5 0.7 (3) C9—O3—C8—O2 2.2 (3)
C3—C4—C5—C6 −1.9 (3) C9—O3—C8—C7 −177.47 (15)
Cl2—C4—C5—C6 178.27 (16) O1—C7—C8—O2 −8.3 (3)
C1—C6—C5—C4 1.1 (3) O1—C7—C8—O3 171.40 (15)
C5—C4—C3—C2 0.9 (3) C11—N1—C9—O3 98.2 (2)
Cl2—C4—C3—C2 −179.26 (14) N2—N1—C9—O3 −83.4 (2)
C4—C3—C2—C1 0.9 (3) C8—O3—C9—N1 −167.03 (15)
C4—C3—C2—Cl1 −178.88 (14) C10—N3—C11—N1 −0.4 (2)
O1—C1—C2—C3 178.97 (17) N2—N1—C11—N3 0.6 (2)
C6—C1—C2—C3 −1.7 (3) C9—N1—C11—N3 179.20 (17)
O1—C1—C2—Cl1 −1.2 (2) N1—N2—C10—N3 0.3 (2)
C6—C1—C2—Cl1 178.12 (15) C11—N3—C10—N2 0.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6A···N3i 0.93 2.45 3.353 (3) 164
C7—H7B···O1ii 0.97 2.58 3.390 (2) 142
C9—H9A···O2iii 0.97 2.52 3.381 (3) 148
C11—H11A···O2iii 0.93 2.54 3.293 (2) 139
Cg1—···.Cg2i . . 3.665 (2) .

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2669).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  3. Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xu, L. Z., Zhang, S. S. & Li, H. J. (2002). J. Chem. Res. Chin. Univ 18, 284–286.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012456/hg2669sup1.cif

e-66-o1122-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012456/hg2669Isup2.hkl

e-66-o1122-Isup2.hkl (110.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES