Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1237. doi: 10.1107/S1600536810015473

1-(2-Methyl-6-nitro-4-phenyl-3-quinol­yl)ethanone

Wan-Sin Loh a,, Hoong-Kun Fun a,*,§, K Kiran b, S Sarveswari b, V Vijayakumar b
PMCID: PMC2979093  PMID: 21579257

Abstract

In the title compound, C18H14N2O3, the quinoline ring system is almost planar [maximum deviation = 0.013 (2) Å] and forms a dihedral angle of 60.36 (7)° with the benzene ring. The nitro group is slightly twisted from the attached quinoline ring system, forming a dihedral angle of 9.06 (19)°. In the crystal packing, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For related structures, see: Fun et al. (2009); Loh et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1237-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O3

  • M r = 306.31

  • Monoclinic, Inline graphic

  • a = 13.297 (2) Å

  • b = 7.7689 (12) Å

  • c = 17.9430 (19) Å

  • β = 129.099 (7)°

  • V = 1438.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.48 × 0.33 × 0.24 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.954, T max = 0.977

  • 14926 measured reflections

  • 4148 independent reflections

  • 3310 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.232

  • S = 1.13

  • 4148 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015473/hb5399sup1.cif

e-66-o1237-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015473/hb5399Isup2.hkl

e-66-o1237-Isup2.hkl (203.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O2i 0.93 2.56 3.208 (3) 127

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

In continuation of our interest in the synthesis and structures of quinolines (Fun et al., 2009; Loh et al., 2009), we now report the title compound, (I).

In the title compound (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is approximately planar with a maximum deviation of 0.013 (2) Å at atom C5. This mean plane of the quinoline ring forms a dihedral angle of 60.36 (7)° with the benzene ring (C10–C15). The nitro group (N2/O2/O3) is slightly twisted from the attached quinoline ring system, forming a dihedral angle of 9.06 (19)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to closely related structures (Fun et al., 2009; Loh et al., 2009).

In the crystal packing (Fig. 2), intermolecular C3—H3A···O2 hydrogen bonds (Table 1) linked the molecules into chains linking down the b axis.

Experimental

A mixture of 5-nitro-2-amino-benzophenone (0.01 M) acetylacetone (0.01 M) and 0.15 ml of concentrated HCl was irradiated under microwave for about 8 min at 240 W. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether. M.P.: 403 K. Yield: 60%. Yellow blocks of (I) were recrystallised from chloroform.

Refinement

All H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. In the final difference Fourier map, the highest peak and the deepest hole are 1.69 Å and 0.97 Å from atoms H18C and O3, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the a axis, showing the chains linking down the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C18H14N2O3 F(000) = 640
Mr = 306.31 Dx = 1.414 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5914 reflections
a = 13.297 (2) Å θ = 3.0–32.9°
b = 7.7689 (12) Å µ = 0.10 mm1
c = 17.9430 (19) Å T = 100 K
β = 129.099 (7)° Block, yellow
V = 1438.5 (3) Å3 0.48 × 0.33 × 0.24 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 4148 independent reflections
Radiation source: fine-focus sealed tube 3310 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −18→18
Tmin = 0.954, Tmax = 0.977 k = −10→10
14926 measured reflections l = −25→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1525P)2 + 0.4637P] where P = (Fo2 + 2Fc2)/3
4148 reflections (Δ/σ)max < 0.001
211 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.77 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.22581 (15) 0.7458 (2) 0.39046 (10) 0.0262 (3)
O2 0.17169 (14) 1.20721 (18) 0.84191 (10) 0.0238 (3)
O3 0.35548 (14) 1.19938 (18) 0.86969 (10) 0.0229 (3)
N1 0.00896 (15) 0.73719 (17) 0.49922 (11) 0.0144 (3)
N2 0.24139 (16) 1.16058 (19) 0.82228 (11) 0.0169 (3)
C1 0.07078 (17) 0.6966 (2) 0.46604 (12) 0.0142 (3)
C2 0.07093 (16) 0.8420 (2) 0.57827 (12) 0.0133 (3)
C3 0.00244 (17) 0.8836 (2) 0.61256 (13) 0.0155 (3)
H3A −0.0807 0.8404 0.5809 0.019*
C4 0.05691 (18) 0.9862 (2) 0.69126 (13) 0.0165 (3)
H4A 0.0124 1.0125 0.7140 0.020*
C5 0.18211 (17) 1.0511 (2) 0.73696 (12) 0.0149 (3)
C6 0.25169 (17) 1.0187 (2) 0.70594 (12) 0.0142 (3)
H6A 0.3334 1.0667 0.7374 0.017*
C7 0.19679 (16) 0.9106 (2) 0.62512 (12) 0.0132 (3)
C8 0.26215 (16) 0.8663 (2) 0.58772 (12) 0.0130 (3)
C9 0.19839 (17) 0.7586 (2) 0.50918 (12) 0.0141 (3)
C10 0.39210 (17) 0.9385 (2) 0.62955 (12) 0.0144 (3)
C11 0.50170 (17) 0.9063 (2) 0.72397 (13) 0.0165 (3)
H11A 0.4945 0.8404 0.7637 0.020*
C12 0.62200 (18) 0.9721 (2) 0.75941 (13) 0.0189 (4)
H12A 0.6946 0.9497 0.8225 0.023*
C13 0.63368 (18) 1.0716 (2) 0.70039 (14) 0.0190 (4)
H13A 0.7140 1.1152 0.7240 0.023*
C14 0.52518 (18) 1.1051 (2) 0.60658 (14) 0.0187 (4)
H14A 0.5328 1.1721 0.5674 0.022*
C15 0.40435 (18) 1.0389 (2) 0.57040 (13) 0.0173 (4)
H15A 0.3320 1.0612 0.5072 0.021*
C16 0.26170 (18) 0.6954 (2) 0.46785 (13) 0.0180 (4)
C17 0.3644 (2) 0.5611 (3) 0.52599 (15) 0.0257 (4)
H17A 0.4068 0.5403 0.4990 0.039*
H17B 0.3255 0.4564 0.5252 0.039*
H17C 0.4269 0.6005 0.5910 0.039*
C18 0.00164 (17) 0.5814 (2) 0.37966 (13) 0.0171 (3)
H18A −0.0812 0.5498 0.3610 0.026*
H18B 0.0523 0.4796 0.3950 0.026*
H18C −0.0104 0.6411 0.3277 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0330 (8) 0.0330 (8) 0.0241 (7) −0.0058 (6) 0.0234 (7) −0.0039 (6)
O2 0.0298 (8) 0.0284 (7) 0.0265 (7) 0.0043 (6) 0.0240 (7) −0.0017 (5)
O3 0.0266 (7) 0.0256 (7) 0.0232 (7) −0.0056 (5) 0.0189 (6) −0.0054 (5)
N1 0.0177 (7) 0.0126 (6) 0.0182 (7) 0.0002 (5) 0.0139 (6) 0.0014 (5)
N2 0.0234 (8) 0.0166 (7) 0.0188 (7) 0.0026 (5) 0.0172 (6) 0.0017 (5)
C1 0.0183 (8) 0.0125 (7) 0.0168 (8) −0.0002 (6) 0.0135 (7) 0.0006 (5)
C2 0.0163 (8) 0.0127 (7) 0.0165 (7) 0.0017 (5) 0.0131 (7) 0.0031 (5)
C3 0.0196 (8) 0.0139 (7) 0.0220 (8) 0.0009 (6) 0.0174 (7) 0.0025 (6)
C4 0.0237 (9) 0.0146 (7) 0.0227 (8) 0.0031 (6) 0.0202 (7) 0.0032 (6)
C5 0.0205 (8) 0.0138 (7) 0.0168 (8) 0.0019 (6) 0.0149 (7) 0.0014 (6)
C6 0.0176 (8) 0.0135 (7) 0.0182 (8) 0.0018 (6) 0.0144 (7) 0.0018 (6)
C7 0.0174 (8) 0.0126 (7) 0.0163 (8) 0.0019 (6) 0.0137 (7) 0.0023 (5)
C8 0.0144 (7) 0.0136 (7) 0.0160 (7) 0.0012 (5) 0.0120 (6) 0.0019 (5)
C9 0.0180 (8) 0.0140 (7) 0.0175 (8) 0.0004 (6) 0.0145 (7) 0.0006 (6)
C10 0.0177 (8) 0.0141 (7) 0.0191 (8) −0.0014 (6) 0.0153 (7) −0.0026 (6)
C11 0.0198 (8) 0.0175 (7) 0.0184 (8) 0.0002 (6) 0.0151 (7) −0.0010 (6)
C12 0.0191 (8) 0.0208 (8) 0.0197 (8) −0.0003 (6) 0.0136 (7) −0.0020 (6)
C13 0.0191 (8) 0.0188 (8) 0.0280 (9) −0.0033 (6) 0.0191 (8) −0.0048 (6)
C14 0.0235 (9) 0.0173 (7) 0.0263 (9) −0.0019 (6) 0.0209 (8) −0.0011 (6)
C15 0.0212 (9) 0.0176 (7) 0.0198 (8) 0.0001 (6) 0.0161 (7) 0.0001 (6)
C16 0.0197 (8) 0.0207 (8) 0.0218 (9) −0.0063 (6) 0.0170 (7) −0.0076 (6)
C17 0.0224 (9) 0.0314 (10) 0.0269 (10) 0.0037 (7) 0.0173 (8) −0.0067 (8)
C18 0.0199 (8) 0.0155 (7) 0.0200 (8) −0.0020 (6) 0.0145 (7) −0.0024 (6)

Geometric parameters (Å, °)

O1—C16 1.214 (2) C9—C16 1.512 (2)
O2—N2 1.2352 (19) C10—C11 1.394 (3)
O3—N2 1.220 (2) C10—C15 1.407 (2)
N1—C1 1.322 (2) C11—C12 1.393 (2)
N1—C2 1.371 (2) C11—H11A 0.9300
N2—C5 1.472 (2) C12—C13 1.397 (3)
C1—C9 1.433 (2) C12—H12A 0.9300
C1—C18 1.500 (2) C13—C14 1.386 (3)
C2—C7 1.420 (2) C13—H13A 0.9300
C2—C3 1.421 (2) C14—C15 1.397 (2)
C3—C4 1.365 (2) C14—H14A 0.9300
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.406 (2) C16—C17 1.499 (3)
C4—H4A 0.9300 C17—H17A 0.9600
C5—C6 1.371 (2) C17—H17B 0.9600
C6—C7 1.416 (2) C17—H17C 0.9600
C6—H6A 0.9300 C18—H18A 0.9600
C7—C8 1.435 (2) C18—H18B 0.9600
C8—C9 1.378 (2) C18—H18C 0.9600
C8—C10 1.493 (2)
C1—N1—C2 117.97 (14) C11—C10—C8 122.36 (15)
O3—N2—O2 123.74 (15) C15—C10—C8 118.50 (15)
O3—N2—C5 118.87 (13) C12—C11—C10 120.56 (16)
O2—N2—C5 117.39 (15) C12—C11—H11A 119.7
N1—C1—C9 122.51 (15) C10—C11—H11A 119.7
N1—C1—C18 117.24 (15) C11—C12—C13 120.11 (17)
C9—C1—C18 120.25 (14) C11—C12—H12A 119.9
N1—C2—C7 123.38 (14) C13—C12—H12A 119.9
N1—C2—C3 116.87 (15) C14—C13—C12 119.78 (17)
C7—C2—C3 119.74 (15) C14—C13—H13A 120.1
C4—C3—C2 120.92 (16) C12—C13—H13A 120.1
C4—C3—H3A 119.5 C13—C14—C15 120.43 (16)
C2—C3—H3A 119.5 C13—C14—H14A 119.8
C3—C4—C5 118.26 (14) C15—C14—H14A 119.8
C3—C4—H4A 120.9 C14—C15—C10 120.00 (17)
C5—C4—H4A 120.9 C14—C15—H15A 120.0
C6—C5—C4 123.46 (16) C10—C15—H15A 120.0
C6—C5—N2 118.22 (15) O1—C16—C17 123.29 (16)
C4—C5—N2 118.32 (14) O1—C16—C9 121.18 (17)
C5—C6—C7 118.74 (16) C17—C16—C9 115.44 (15)
C5—C6—H6A 120.6 C16—C17—H17A 109.5
C7—C6—H6A 120.6 C16—C17—H17B 109.5
C6—C7—C2 118.85 (14) H17A—C17—H17B 109.5
C6—C7—C8 123.23 (15) C16—C17—H17C 109.5
C2—C7—C8 117.91 (15) H17A—C17—H17C 109.5
C9—C8—C7 117.43 (15) H17B—C17—H17C 109.5
C9—C8—C10 120.86 (14) C1—C18—H18A 109.5
C7—C8—C10 121.67 (14) C1—C18—H18B 109.5
C8—C9—C1 120.78 (14) H18A—C18—H18B 109.5
C8—C9—C16 121.66 (15) C1—C18—H18C 109.5
C1—C9—C16 117.51 (14) H18A—C18—H18C 109.5
C11—C10—C15 119.12 (16) H18B—C18—H18C 109.5
C2—N1—C1—C9 −0.4 (2) C7—C8—C9—C1 1.1 (2)
C2—N1—C1—C18 179.85 (14) C10—C8—C9—C1 −176.71 (15)
C1—N1—C2—C7 0.9 (2) C7—C8—C9—C16 −176.30 (15)
C1—N1—C2—C3 −179.96 (14) C10—C8—C9—C16 5.9 (2)
N1—C2—C3—C4 179.55 (15) N1—C1—C9—C8 −0.7 (3)
C7—C2—C3—C4 −1.3 (2) C18—C1—C9—C8 179.11 (15)
C2—C3—C4—C5 0.6 (2) N1—C1—C9—C16 176.82 (15)
C3—C4—C5—C6 0.9 (3) C18—C1—C9—C16 −3.4 (2)
C3—C4—C5—N2 −179.50 (15) C9—C8—C10—C11 −119.51 (18)
O3—N2—C5—C6 −9.7 (2) C7—C8—C10—C11 62.8 (2)
O2—N2—C5—C6 170.71 (15) C9—C8—C10—C15 58.8 (2)
O3—N2—C5—C4 170.68 (15) C7—C8—C10—C15 −118.90 (17)
O2—N2—C5—C4 −8.9 (2) C15—C10—C11—C12 −0.2 (2)
C4—C5—C6—C7 −1.7 (3) C8—C10—C11—C12 178.13 (15)
N2—C5—C6—C7 178.71 (14) C10—C11—C12—C13 0.1 (3)
C5—C6—C7—C2 0.9 (2) C11—C12—C13—C14 0.2 (3)
C5—C6—C7—C8 −179.01 (15) C12—C13—C14—C15 −0.5 (3)
N1—C2—C7—C6 179.57 (15) C13—C14—C15—C10 0.5 (3)
C3—C2—C7—C6 0.5 (2) C11—C10—C15—C14 −0.1 (2)
N1—C2—C7—C8 −0.5 (2) C8—C10—C15—C14 −178.50 (15)
C3—C2—C7—C8 −179.57 (14) C8—C9—C16—O1 −109.8 (2)
C6—C7—C8—C9 179.40 (15) C1—C9—C16—O1 72.7 (2)
C2—C7—C8—C9 −0.6 (2) C8—C9—C16—C17 73.6 (2)
C6—C7—C8—C10 −2.8 (2) C1—C9—C16—C17 −103.90 (19)
C2—C7—C8—C10 177.24 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O2i 0.93 2.56 3.208 (3) 127

Symmetry codes: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5399).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689. [DOI] [PMC free article] [PubMed]
  5. Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015473/hb5399sup1.cif

e-66-o1237-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015473/hb5399Isup2.hkl

e-66-o1237-Isup2.hkl (203.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES