Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1061. doi: 10.1107/S1600536810012924

5-(4-Chloro­phen­yl)-3-(2-fur­yl)-1,2,4-triazolo[3,4-a]isoquinoline

F Nawaz Khan a, P Manivel a, K Prabakarana a, Venkatesha R Hathwar b, Mehmet Akkurt c,*
PMCID: PMC2979100  PMID: 21579118

Abstract

In the title mol­ecule, C20H12ClN3O, the triazoloisoquinoline ring system is nearly planar, with an r.m.s. deviation of 0.018 (3) Å and a maximum deviation of 0.034 (3) Å from the mean plane for the triazole ring C atom which is bonded to the benzene ring. The furan and benzene rings are twisted by 59.71 (14) and 66.95 (10)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The mol­ecular conformation is stabilized by an intra­molecular π–π inter­action [centroid-to-centroid distance = 3.5262 (18) Å]. The crystal packing is stabilized by weak C—H⋯π inter­actions and weak π–π inter­actions [centroid-to-centroid distance = 3.9431 (17) Å].

Related literature

For a related crystal structure, see: Khan et al. (2010).graphic file with name e-66-o1061-scheme1.jpg

Experimental

Crystal data

  • C20H12ClN3O

  • M r = 345.78

  • Orthorhombic, Inline graphic

  • a = 9.0281 (9) Å

  • b = 12.6034 (11) Å

  • c = 14.6444 (15) Å

  • V = 1666.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 290 K

  • 0.32 × 0.24 × 0.15 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.933, T max = 0.964

  • 9280 measured reflections

  • 3029 independent reflections

  • 1831 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.082

  • S = 0.85

  • 3029 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), with 1245 Freidel pairs

  • Flack parameter: 0.00 (8)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012924/pv2272sup1.cif

e-66-o1061-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012924/pv2272Isup2.hkl

e-66-o1061-Isup2.hkl (148.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the N1–N3/C1/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg2i 0.93 2.95 3.273 (4) 102

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the FIST programme for the data collection on the Oxford single-crystal diffractometer at the SSCU, IISc, Bangalore. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

As part of our search for new isoquinoline analogues (Khan et al., 2010), we focused on synthesis of the title compound and its crystal structure is reported in this article.

In the title molecule (I), Fig. 1, the triazoloisoquinoline ring system (N1–N3/C1–C9/C16) is nearly planar, with an r.m.s. deviation of 0.018 (3) Å and a maximum deviation of 0.034 (3) Å from the mean plane for the triazole ring C16 atom which is bonded to the benzene ring. The furan (O1/C17–C20) and benzene (C10–C15) rings are twisted by 59.71 (14) and 66.95 (10)°, respectively, with respect to the mean plane of the triazoloisoquinoline ring system. The furan (O1/C17–C20) and benzene (C10–C15) rings make a dihedral angle of 21.76 (16)° with each other. The molecular conformation is stabilized by an intramolecular π–π interaction [Cg1···Cg5(x, y, z) = 3.5262 (18) Å; Cg1 and Cg5 are the centroids of the O1/C17–C20 and C10–C15 rings, respectively]. In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by weak C—H···π interactions (Table 1) and weak π–π interactions [Cg1···Cg2(1/2 + x, 3/2 - y, 1 - z) = 3.9431 (17) Å; Cg2 is the centroid of the N1–N3/C1/C16 ring]. Fig. 2 shows the packing diagram of (I) viewing down the a axis.

Experimental

2-(3-(4-Chlorophenylisoquinolin-1-yl)hydrazine (1 mmol) was condensed with furan-2-carbaldehyde (1.1 mmol) under refluxing conditions in isopropanol (10 ml) solvent to give the corresponding hydrazone in high yield. After removal of solvent the compound was then oxidatively cyclized in nitrobenzene (10 ml) at 473 K. The product was recrystallized from dichlomethane to give block-shaped crystals.

Refinement

H atoms were placed in calculated positions with C—H = 0.93 Å and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing diagram of (I) viewing down the a axis. H atoms have been omitted for clarity.

Crystal data

C20H12ClN3O F(000) = 712
Mr = 345.78 Dx = 1.378 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1165 reflections
a = 9.0281 (9) Å θ = 1.7–20.6°
b = 12.6034 (11) Å µ = 0.24 mm1
c = 14.6444 (15) Å T = 290 K
V = 1666.3 (3) Å3 Block, colourless
Z = 4 0.32 × 0.24 × 0.15 mm

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer 3029 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1831 reflections with I > 2σ(I)
graphite Rint = 0.071
ω scans θmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −8→10
Tmin = 0.933, Tmax = 0.964 k = −14→15
9280 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0329P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082 (Δ/σ)max = 0.001
S = 0.85 Δρmax = 0.13 e Å3
3029 reflections Δρmin = −0.14 e Å3
227 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0109 (10)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), with 1245 Freidel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.33125 (9) 1.00293 (7) 0.16049 (6) 0.0937 (3)
O1 0.5357 (2) 0.77175 (16) 0.41053 (13) 0.0713 (8)
N1 0.3343 (2) 0.56533 (14) 0.42785 (13) 0.0434 (7)
N2 0.4295 (2) 0.58135 (18) 0.56552 (15) 0.0607 (9)
N3 0.3791 (3) 0.47806 (17) 0.55611 (15) 0.0588 (8)
C1 0.3237 (3) 0.46973 (19) 0.47266 (18) 0.0485 (9)
C2 0.2614 (3) 0.3788 (2) 0.42840 (18) 0.0494 (9)
C3 0.2546 (3) 0.2798 (2) 0.4715 (2) 0.0667 (11)
C4 0.1926 (4) 0.1962 (2) 0.4261 (2) 0.0837 (14)
C5 0.1397 (4) 0.2076 (3) 0.3387 (2) 0.0833 (16)
C6 0.1482 (3) 0.3040 (2) 0.29456 (19) 0.0675 (11)
C7 0.2094 (3) 0.39175 (19) 0.33964 (18) 0.0500 (10)
C8 0.2207 (3) 0.4941 (2) 0.29680 (17) 0.0520 (9)
C9 0.2803 (2) 0.57833 (19) 0.33756 (16) 0.0420 (8)
C10 0.2922 (3) 0.68419 (19) 0.29424 (16) 0.0440 (9)
C11 0.2102 (3) 0.7688 (2) 0.32553 (17) 0.0512 (10)
C12 0.2214 (3) 0.8674 (2) 0.28522 (19) 0.0600 (11)
C13 0.3148 (3) 0.8789 (2) 0.21205 (19) 0.0574 (10)
C14 0.3970 (3) 0.7960 (2) 0.17858 (18) 0.0598 (11)
C15 0.3843 (3) 0.6977 (2) 0.21980 (17) 0.0552 (10)
C16 0.4029 (3) 0.6318 (2) 0.48920 (17) 0.0491 (9)
C17 0.4389 (3) 0.7432 (2) 0.47754 (19) 0.0538 (10)
C18 0.3987 (3) 0.8269 (2) 0.5256 (2) 0.0627 (11)
C19 0.4689 (4) 0.9155 (3) 0.4879 (2) 0.0837 (14)
C20 0.5505 (4) 0.8809 (3) 0.4193 (3) 0.0800 (14)
H3 0.29170 0.27110 0.53030 0.0800*
H4 0.18610 0.13060 0.45490 0.1000*
H5 0.09780 0.14970 0.30900 0.1000*
H6 0.11350 0.31090 0.23510 0.0810*
H8 0.18460 0.50190 0.23770 0.0620*
H11 0.14630 0.75940 0.37470 0.0610*
H12 0.16690 0.92460 0.30710 0.0720*
H14 0.46020 0.80580 0.12910 0.0720*
H15 0.43810 0.64050 0.19730 0.0660*
H18 0.33520 0.82690 0.57550 0.0750*
H19 0.45980 0.98540 0.50740 0.1010*
H20 0.60940 0.92350 0.38220 0.0960*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0975 (6) 0.0700 (5) 0.1137 (7) −0.0069 (5) 0.0076 (5) 0.0403 (6)
O1 0.0635 (12) 0.0737 (15) 0.0768 (14) −0.0078 (11) 0.0015 (12) −0.0030 (13)
N1 0.0512 (13) 0.0416 (12) 0.0374 (11) −0.0028 (11) −0.0005 (11) −0.0017 (11)
N2 0.0728 (15) 0.0637 (16) 0.0455 (14) 0.0032 (13) −0.0107 (12) −0.0025 (14)
N3 0.0732 (15) 0.0575 (16) 0.0457 (13) 0.0034 (12) −0.0032 (12) 0.0029 (12)
C1 0.0557 (17) 0.0445 (16) 0.0453 (16) 0.0088 (13) 0.0062 (15) 0.0033 (14)
C2 0.0567 (17) 0.0442 (16) 0.0472 (16) 0.0006 (13) 0.0102 (14) 0.0012 (15)
C3 0.080 (2) 0.0570 (19) 0.0632 (19) −0.0034 (15) 0.0079 (17) 0.0130 (18)
C4 0.109 (3) 0.054 (2) 0.088 (2) −0.0159 (19) 0.010 (2) 0.010 (2)
C5 0.104 (3) 0.054 (2) 0.092 (3) −0.0220 (19) −0.002 (2) −0.011 (2)
C6 0.076 (2) 0.060 (2) 0.0665 (19) −0.0110 (17) −0.0065 (17) −0.0052 (18)
C7 0.0521 (17) 0.0433 (16) 0.0547 (18) −0.0020 (13) 0.0042 (14) −0.0043 (15)
C8 0.0570 (16) 0.0545 (17) 0.0444 (16) 0.0003 (14) −0.0038 (13) −0.0045 (15)
C9 0.0442 (14) 0.0477 (16) 0.0341 (14) 0.0027 (12) 0.0006 (12) −0.0005 (14)
C10 0.0465 (15) 0.0498 (16) 0.0358 (14) −0.0018 (13) −0.0030 (13) 0.0016 (13)
C11 0.0491 (17) 0.0550 (17) 0.0495 (16) 0.0003 (13) 0.0083 (13) 0.0052 (15)
C12 0.0600 (18) 0.0530 (18) 0.067 (2) 0.0057 (14) 0.0012 (16) 0.0066 (16)
C13 0.0597 (18) 0.0538 (17) 0.0587 (18) −0.0109 (16) −0.0070 (16) 0.0193 (16)
C14 0.0611 (19) 0.067 (2) 0.0513 (17) −0.0080 (15) 0.0113 (14) 0.0033 (17)
C15 0.0623 (17) 0.0530 (18) 0.0504 (16) −0.0013 (14) 0.0093 (15) −0.0030 (15)
C16 0.0546 (16) 0.0521 (17) 0.0407 (16) 0.0045 (14) −0.0016 (13) −0.0055 (15)
C17 0.0525 (17) 0.0586 (19) 0.0502 (18) −0.0028 (15) −0.0081 (15) 0.0001 (17)
C18 0.0672 (19) 0.0539 (18) 0.0670 (19) 0.0022 (16) 0.0031 (16) −0.0094 (17)
C19 0.088 (2) 0.060 (2) 0.103 (3) 0.000 (2) −0.018 (2) −0.018 (2)
C20 0.073 (2) 0.064 (2) 0.103 (3) −0.0245 (19) −0.019 (2) 0.016 (2)

Geometric parameters (Å, °)

Cl1—C13 1.742 (3) C11—C12 1.380 (4)
O1—C17 1.362 (3) C12—C13 1.371 (4)
O1—C20 1.388 (4) C13—C14 1.372 (4)
N1—C1 1.375 (3) C14—C15 1.383 (4)
N1—C9 1.419 (3) C16—C17 1.451 (4)
N1—C16 1.376 (3) C17—C18 1.319 (4)
N2—N3 1.386 (3) C18—C19 1.398 (4)
N2—C16 1.308 (3) C19—C20 1.320 (5)
N3—C1 1.325 (3) C3—H3 0.9300
C1—C2 1.432 (4) C4—H4 0.9300
C2—C3 1.400 (4) C5—H5 0.9300
C2—C7 1.392 (4) C6—H6 0.9300
C3—C4 1.366 (4) C8—H8 0.9300
C4—C5 1.374 (4) C11—H11 0.9300
C5—C6 1.378 (4) C12—H12 0.9300
C6—C7 1.402 (4) C14—H14 0.9300
C7—C8 1.438 (4) C15—H15 0.9300
C8—C9 1.332 (3) C18—H18 0.9300
C9—C10 1.481 (3) C19—H19 0.9300
C10—C11 1.377 (4) C20—H20 0.9300
C10—C15 1.382 (4)
Cl1···C18i 3.579 (3) C16···C11 3.428 (4)
Cl1···C16ii 3.634 (3) C17···C11 3.053 (4)
Cl1···N1ii 3.378 (2) C17···C10 3.084 (4)
Cl1···C9ii 3.634 (2) C18···Cl1viii 3.579 (3)
Cl1···H18i 2.9000 C18···C11 3.467 (4)
O1···N1 3.184 (3) C19···C1v 3.562 (5)
O1···C10 2.992 (3) C20···C16v 3.456 (5)
O1···C11 3.192 (3) C20···C12 3.565 (5)
O1···C15 3.247 (3) C20···C1v 3.483 (5)
N1···O1 3.184 (3) C2···H14iii 2.8100
N1···N2 2.201 (3) C3···H14iii 2.9800
N1···Cl1iii 3.378 (2) C8···H15 3.0600
N2···N1 2.201 (3) C14···H3vii 2.8900
N3···N1 2.214 (3) C15···H8 3.0700
N2···H6iv 2.8600 C17···H11 3.0500
N2···H11v 2.9400 C17···H11v 2.8600
N2···H12v 2.8400 C18···H11v 2.8800
N2···H8iv 2.9200 H3···N3 2.7500
N3···H3 2.7500 H3···C14iv 2.8900
N3···H8iv 2.7300 H6···H8 2.4900
N3···H20vi 2.8800 H6···N2vii 2.8600
C1···C19vi 3.562 (5) H8···C15 3.0700
C1···C20vi 3.483 (5) H8···H6 2.4900
C3···C14iv 3.462 (4) H8···N2vii 2.9200
C9···Cl1iii 3.634 (2) H8···N3vii 2.7300
C10···C17 3.084 (4) H11···C17 3.0500
C10···O1 2.992 (3) H11···N2vi 2.9400
C11···O1 3.192 (3) H11···C17vi 2.8600
C11···C17 3.053 (4) H11···C18vi 2.8800
C11···C18 3.467 (4) H12···N2vi 2.8400
C11···C16 3.428 (4) H14···C2ii 2.8100
C12···C20 3.565 (5) H14···C3ii 2.9800
C14···C3vii 3.462 (4) H15···C8 3.0600
C15···O1 3.247 (3) H18···Cl1viii 2.9000
C16···Cl1iii 3.634 (3) H20···N3v 2.8800
C16···C20vi 3.456 (5)
C17—O1—C20 104.9 (2) N1—C16—N2 110.2 (2)
C1—N1—C9 121.46 (19) N1—C16—C17 127.8 (2)
C1—N1—C16 104.7 (2) N2—C16—C17 122.0 (2)
C9—N1—C16 133.9 (2) O1—C17—C16 118.9 (2)
N3—N2—C16 108.1 (2) O1—C17—C18 110.5 (2)
N2—N3—C1 106.9 (2) C16—C17—C18 130.5 (3)
N1—C1—N3 110.2 (2) C17—C18—C19 107.7 (3)
N1—C1—C2 120.8 (2) C18—C19—C20 106.9 (3)
N3—C1—C2 129.0 (2) O1—C20—C19 110.1 (3)
C1—C2—C3 121.8 (2) C2—C3—H3 120.00
C1—C2—C7 117.5 (2) C4—C3—H3 120.00
C3—C2—C7 120.7 (2) C3—C4—H4 119.00
C2—C3—C4 119.1 (3) C5—C4—H4 120.00
C3—C4—C5 121.0 (3) C4—C5—H5 120.00
C4—C5—C6 120.7 (3) C6—C5—H5 120.00
C5—C6—C7 119.8 (3) C5—C6—H6 120.00
C2—C7—C6 118.7 (2) C7—C6—H6 120.00
C2—C7—C8 119.3 (2) C7—C8—H8 118.00
C6—C7—C8 122.0 (2) C9—C8—H8 118.00
C7—C8—C9 123.3 (2) C10—C11—H11 120.00
N1—C9—C8 117.7 (2) C12—C11—H11 119.00
N1—C9—C10 118.6 (2) C11—C12—H12 121.00
C8—C9—C10 123.7 (2) C13—C12—H12 121.00
C9—C10—C11 121.1 (2) C13—C14—H14 121.00
C9—C10—C15 119.5 (2) C15—C14—H14 121.00
C11—C10—C15 119.4 (2) C10—C15—H15 120.00
C10—C11—C12 121.1 (2) C14—C15—H15 120.00
C11—C12—C13 118.3 (2) C17—C18—H18 126.00
Cl1—C13—C12 119.1 (2) C19—C18—H18 126.00
Cl1—C13—C14 118.8 (2) C18—C19—H19 127.00
C12—C13—C14 122.1 (2) C20—C19—H19 127.00
C13—C14—C15 118.8 (2) O1—C20—H20 125.00
C10—C15—C14 120.3 (2) C19—C20—H20 125.00
C20—O1—C17—C16 −177.9 (3) C3—C4—C5—C6 0.1 (5)
C20—O1—C17—C18 −1.2 (3) C4—C5—C6—C7 −0.9 (5)
C17—O1—C20—C19 0.6 (4) C5—C6—C7—C2 0.5 (4)
C9—N1—C1—N3 −178.9 (2) C5—C6—C7—C8 −179.9 (3)
C9—N1—C1—C2 1.9 (4) C2—C7—C8—C9 0.7 (4)
C16—N1—C1—N3 1.2 (3) C6—C7—C8—C9 −179.0 (3)
C16—N1—C1—C2 −178.0 (2) C7—C8—C9—N1 −0.3 (4)
C1—N1—C9—C8 −1.0 (3) C7—C8—C9—C10 −179.8 (2)
C1—N1—C9—C10 178.6 (2) N1—C9—C10—C11 −67.9 (3)
C16—N1—C9—C8 178.8 (3) N1—C9—C10—C15 113.7 (3)
C16—N1—C9—C10 −1.6 (4) C8—C9—C10—C11 111.7 (3)
C1—N1—C16—N2 −1.0 (3) C8—C9—C10—C15 −66.7 (3)
C1—N1—C16—C17 −178.7 (3) C9—C10—C11—C12 179.9 (2)
C9—N1—C16—N2 179.1 (2) C15—C10—C11—C12 −1.7 (4)
C9—N1—C16—C17 1.4 (4) C9—C10—C15—C14 −179.9 (2)
C16—N2—N3—C1 0.4 (3) C11—C10—C15—C14 1.7 (4)
N3—N2—C16—N1 0.4 (3) C10—C11—C12—C13 1.0 (4)
N3—N2—C16—C17 178.3 (2) C11—C12—C13—Cl1 −179.7 (2)
N2—N3—C1—N1 −1.0 (3) C11—C12—C13—C14 −0.3 (4)
N2—N3—C1—C2 178.2 (3) Cl1—C13—C14—C15 179.7 (2)
N1—C1—C2—C3 177.6 (2) C12—C13—C14—C15 0.4 (4)
N1—C1—C2—C7 −1.4 (4) C13—C14—C15—C10 −1.1 (4)
N3—C1—C2—C3 −1.5 (5) N1—C16—C17—O1 −62.7 (4)
N3—C1—C2—C7 179.5 (3) N1—C16—C17—C18 121.5 (3)
C1—C2—C3—C4 179.4 (3) N2—C16—C17—O1 119.9 (3)
C7—C2—C3—C4 −1.7 (4) N2—C16—C17—C18 −56.0 (4)
C1—C2—C7—C6 179.8 (2) O1—C17—C18—C19 1.4 (3)
C1—C2—C7—C8 0.2 (4) C16—C17—C18—C19 177.5 (3)
C3—C2—C7—C6 0.8 (4) C17—C18—C19—C20 −0.9 (4)
C3—C2—C7—C8 −178.8 (3) C18—C19—C20—O1 0.2 (4)
C2—C3—C4—C5 1.2 (5)

Symmetry codes: (i) −x+1/2, −y+2, z−1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1/2, −y+1, z+1/2; (v) x+1/2, −y+3/2, −z+1; (vi) x−1/2, −y+3/2, −z+1; (vii) −x+1/2, −y+1, z−1/2; (viii) −x+1/2, −y+2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C20—H20···Cg2v 0.93 2.95 3.273 (4) 102

Symmetry codes: (v) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2272).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R. & Ng, S. W. (2010). Acta Cryst. E66, o488. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012924/pv2272sup1.cif

e-66-o1061-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012924/pv2272Isup2.hkl

e-66-o1061-Isup2.hkl (148.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES