Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6691–6695. doi: 10.1073/pnas.86.17.6691

A strategy to detect and isolate an intron-containing gene in the presence of multiple processed pseudogenes.

B Davies 1, S Feo 1, E Heard 1, M Fried 1
PMCID: PMC297911  PMID: 2771953

Abstract

We have devised a strategy that utilizes the polymerase chain reaction (PCR) for the detection and isolation of intron-containing genes in the presence of an abundance of processed pseudogenes. The method depends on the genomic DNA sequence between the PCR primers spanning at least one intron in the gene of interest, resulting in the generation of a larger intron-containing PCR product in addition to the smaller PCR product amplified from the intronless pseudogenes. A unique intron probe isolated from the larger PCR product is used for the detection of intron-containing clones from recombinant DNA libraries that also contain pseudogene clones. This method has been used successfully for the selective isolation of an intron-containing rat L19 ribosomal protein gene in the presence of multiple pseudogenes. Analysis of a number of mammalian ribosomal protein multigene families by PCR indicates that they all contain only a single gene with introns.

Full text

PDF
6691

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belhumeur P., Paterno G. D., Boileau G., Claverie J. M., Skup D. Isolation and characterisation of a murine cDNA clone highly homologous to the yeast L29 ribosomal protein gene. Nucleic Acids Res. 1987 Feb 11;15(3):1019–1029. doi: 10.1093/nar/15.3.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chan Y. L., Lin A., McNally J., Peleg D., Meyuhas O., Wool I. G. The primary structure of rat ribosomal protein L19. A determination from the sequence of nucleotides in a cDNA and from the sequence of amino acids in the protein. J Biol Chem. 1987 Jan 25;262(3):1111–1115. [PubMed] [Google Scholar]
  3. Chan Y. L., Lin A., McNally J., Wool I. G. The primary structure of rat ribosomal protein L5. A comparison of the sequence of amino acids in the proteins that interact with 5 S rRNA. J Biol Chem. 1987 Sep 15;262(26):12879–12886. [PubMed] [Google Scholar]
  4. Chan Y. L., Lin A., Paz V., Wool I. G. The primary structure of rat ribosomal protein S8. Nucleic Acids Res. 1987 Nov 25;15(22):9451–9459. doi: 10.1093/nar/15.22.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein S6. J Biol Chem. 1988 Feb 25;263(6):2891–2896. [PubMed] [Google Scholar]
  6. Chen I. T., Roufa D. J. The transcriptionally active human ribosomal protein S17 gene. Gene. 1988 Oct 15;70(1):107–116. doi: 10.1016/0378-1119(88)90109-6. [DOI] [PubMed] [Google Scholar]
  7. Davies M. S., Henney A., Ward W. H., Craig R. K. Characterisation of an mRNA encoding a human ribosomal protein homologous to the yeast L44 ribosomal protein. Gene. 1986;45(2):183–191. doi: 10.1016/0378-1119(86)90253-2. [DOI] [PubMed] [Google Scholar]
  8. Devi K. R., Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein L18. DNA. 1988 Apr;7(3):157–162. doi: 10.1089/dna.1988.7.157. [DOI] [PubMed] [Google Scholar]
  9. Dudov K. P., Perry R. P. The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell. 1984 Jun;37(2):457–468. doi: 10.1016/0092-8674(84)90376-3. [DOI] [PubMed] [Google Scholar]
  10. Gallagher M. J., Chan Y. L., Lin A., Wool I. G. Primary structure of rat ribosomal protein L36a. DNA. 1988 May;7(4):269–273. doi: 10.1089/dna.1988.7.269. [DOI] [PubMed] [Google Scholar]
  11. Giallongo A., Yon J., Fried M. Ribosomal protein L7a is encoded by a gene (Surf-3) within the tightly clustered mouse surfeit locus. Mol Cell Biol. 1989 Jan;9(1):224–231. doi: 10.1128/mcb.9.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heinze H., Arnold H. H., Fischer D., Kruppa J. The primary structure of the human ribosomal protein S6 derived from a cloned cDNA. J Biol Chem. 1988 Mar 25;263(9):4139–4144. [PubMed] [Google Scholar]
  13. Huxley C., Williams T., Fried M. One of the tightly clustered genes of the mouse surfeit locus is a highly expressed member of a multigene family whose other members are predominantly processed pseudogenes. Mol Cell Biol. 1988 Sep;8(9):3898–3905. doi: 10.1128/mcb.8.9.3898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuwano Y., Nakanishi O., Nabeshima Y., Tanaka T., Ogata K. Molecular cloning and nucleotide sequence of DNA complementary to rat ribosomal protein S26 messenger RNA. J Biochem. 1985 Apr;97(4):983–992. doi: 10.1093/oxfordjournals.jbchem.a135175. [DOI] [PubMed] [Google Scholar]
  15. Kuzumaki T., Tanaka T., Ishikawa K., Ogata K. Rat ribosomal protein L35a multigene family: molecular structure and characterization of three L35a-related pseudogenes. Biochim Biophys Acta. 1987 Jul 14;909(2):99–106. doi: 10.1016/0167-4781(87)90031-5. [DOI] [PubMed] [Google Scholar]
  16. Lin A., Chan Y. L., Jones R., Wool I. G. The primary structure of rat ribosomal protein S12. The relationship of rat S12 to other ribosomal proteins and a correlation of the amino acid sequences of rat and yeast ribosomal proteins. J Biol Chem. 1987 Oct 15;262(29):14343–14351. [PubMed] [Google Scholar]
  17. Lin A., Chan Y. L., McNally J., Peleg D., Meyuhas O., Wool I. G. The primary structure of rat ribosomal protein L7. The presence near the amino terminus of L7 of five tandem repeats of a sequence of 12 amino acids. J Biol Chem. 1987 Sep 15;262(26):12665–12671. [PubMed] [Google Scholar]
  18. Lott J. B., Mackie G. A. Isolation and characterization of cloned cDNAs that code for human ribosomal protein S6. Gene. 1988 May 15;65(1):31–39. doi: 10.1016/0378-1119(88)90414-3. [DOI] [PubMed] [Google Scholar]
  19. Lott J. B., Mackie G. A. Sequence of a cloned cDNA encoding human ribosomal protein S11. Nucleic Acids Res. 1988 Feb 11;16(3):1205–1205. doi: 10.1093/nar/16.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nakanishi O., Oyanagi M., Kuwano Y., Tanaka T., Nakayama T., Mitsui H., Nabeshima Y., Ogata K. Molecular cloning and nucleotide sequences of cDNAs specific for rat liver ribosomal proteins S17 and L30. Gene. 1985;35(3):289–296. doi: 10.1016/0378-1119(85)90007-1. [DOI] [PubMed] [Google Scholar]
  22. Rajchel A., Chan Y. L., Wool I. G. The primary structure of rat ribosomal protein L32. Nucleic Acids Res. 1988 Mar 25;16(5):2347–2347. doi: 10.1093/nar/16.5.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhoads D. D., Dixit A., Roufa D. J. Primary structure of human ribosomal protein S14 and the gene that encodes it. Mol Cell Biol. 1986 Aug;6(8):2774–2783. doi: 10.1128/mcb.6.8.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rhoads D. D., Roufa D. J. Emetine resistance of Chinese hamster cells: structures of wild-type and mutant ribosomal protein S14 mRNAs. Mol Cell Biol. 1985 Jul;5(7):1655–1659. doi: 10.1128/mcb.5.7.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  26. Tamura S., Kuwano Y., Nakayama T., Tanaka S., Tanaka T., Ogata K. Molecular cloning and nucleotide sequence of cDNA specific for rat ribosomal protein L5. Eur J Biochem. 1987 Oct 1;168(1):83–87. doi: 10.1111/j.1432-1033.1987.tb13390.x. [DOI] [PubMed] [Google Scholar]
  27. Tanaka T., Kuwano Y., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L27. Eur J Biochem. 1988 Apr 5;173(1):53–56. doi: 10.1111/j.1432-1033.1988.tb13965.x. [DOI] [PubMed] [Google Scholar]
  28. Tanaka T., Kuwano Y., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein S11. J Biol Chem. 1985 May 25;260(10):6329–6333. [PubMed] [Google Scholar]
  29. Tanaka T., Kuwano Y., Kuzumaki T., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31. Eur J Biochem. 1987 Jan 2;162(1):45–48. doi: 10.1111/j.1432-1033.1987.tb10539.x. [DOI] [PubMed] [Google Scholar]
  30. Tanaka T., Wakasugi K., Kuwano Y., Ishikawa K., Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L35a. Eur J Biochem. 1986 Feb 3;154(3):523–527. doi: 10.1111/j.1432-1033.1986.tb09429.x. [DOI] [PubMed] [Google Scholar]
  31. Vanin E. F. Processed pseudogenes: characteristics and evolution. Annu Rev Genet. 1985;19:253–272. doi: 10.1146/annurev.ge.19.120185.001345. [DOI] [PubMed] [Google Scholar]
  32. Wagner M., Perry R. P. Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA. Mol Cell Biol. 1985 Dec;5(12):3560–3576. doi: 10.1128/mcb.5.12.3560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiedemann L. M., Perry R. P. Characterization of the expressed gene and several processed pseudogenes for the mouse ribosomal protein L30 gene family. Mol Cell Biol. 1984 Nov;4(11):2518–2528. doi: 10.1128/mcb.4.11.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES