Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1233–o1234. doi: 10.1107/S1600536810015217

(E)-4-[(4-Fluoro­benzyl­idene)amino]-3-[1-(4-isobutyl­phen­yl)eth­yl]-1-(morpholino­meth­yl)-1H-1,2,4-triazole-5(4H)-thione methanol hemisolvate

Jia Hao Goh a,, Hoong-Kun Fun a,*,§, A C Vinayaka b, B Kalluraya b
PMCID: PMC2979111  PMID: 21579255

Abstract

In the title compound, C26H32FN5OS·0.5CH4O, the methyl group of the methanol solvent mol­ecule is disordered over two sites with equal occupancies and the solvent is further disordered about a crystallographic twofold rotation axis. The organic mol­ecule exists in a trans configuration with respect to the acyclic C=N bond. An intra­molecular C—H⋯S hydrogen bond generates an S(6) ring motif. The morpholine ring adopts a chair conformation. The essentially planar 1,2,4-triazole ring [maximum deviation = 0.013 (2) Å] forms dihedral angles of 11.21 (10) and 67.53 (11)°, respectively, with the fluoro­phenyl unit and the isobutyl-substituted benzene ring. The crystal structure is stabilized by a weak inter­molecular C—H⋯π inter­action.

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Calhoun et al. (1995); Pandeya et al. (1999, 2000); Sujith et al. (2009). For graph-set descriptions of hydrogen-bond motifs, see: Bernstein et al. (1995). For closely related structures, see: Goh et al. (2010a,b ). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1233-scheme1.jpg

Experimental

Crystal data

  • C26H32FN5OS·0.5CH4O

  • M r = 497.65

  • Monoclinic, Inline graphic

  • a = 40.186 (3) Å

  • b = 4.7840 (3) Å

  • c = 30.073 (2) Å

  • β = 116.112 (2)°

  • V = 5191.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.31 × 0.16 × 0.06 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.951, T max = 0.990

  • 24705 measured reflections

  • 5921 independent reflections

  • 4378 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.149

  • S = 1.04

  • 5921 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015217/lh5026sup1.cif

e-66-o1233-sup1.cif (27.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015217/lh5026Isup2.hkl

e-66-o1233-Isup2.hkl (290KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the 1,2,4-triazole ring (N2/C8/N3/N4/C9).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯S1 0.93 2.51 3.221 (2) 133
C22—H22ACg1i 0.97 2.64 3.492 (2) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used. Despite their large therapeutic applications, they have several undesired, often serious side effects (Calhoun et al., 1995). Therefore, long term administration is not advisable. The need for new anti-inflammatory drugs is obvious and accordingly, there have been renewed interest in anti-inflammatory agents endowed with potent biological activity. In this context, it has been shown that some Mannich bases find applications as anti-inflammatory, analgesic agents (Sujith et al., 2009) and anti-microbial properties (Pandeya et al., 1999, 2000).

The asymmetric unit of the title 1,2,4-triazole compound (Fig. 1) comprises of a (E)-4-[(4-fluorobenzylidene)amino]-3-[1-(4-isobutylphenyl)ethyl] -1-(morpholinomethyl)-1H-1,2,4-triazole-5(4H)-thione molecule and a methanol molecule of crystallization, which is partially occupied with a fixed occupancy of 0.5. The atom C27 of the methanol solvent molecule is disordered over two sites with an equal occupancy of 0.25. Both the disordered components are further disordered over a crystallographic two-fold rotation [symmetry code to generate equivalent atoms: -x, y, -z + 1/2]. The main molecule exists in an E configuration with respect to the acyclic C7═N1 double bond [bond length of C7═N1 = 1.276 (2) Å and torsion angle of C6–C7–N1–N2 of 176.41 (16)°]. An intramolecular C7—H7A···S1 hydrogen bond generates a six-membered ring, producing an S(6) ring motif (Bernstein et al., 1995). The morpholino unit adopts a chair conformation, with puckering parameters of Q = 0.580 (2) Å, θ = 178.2 (2)° and φ = 126 (6)°. The 1,2,4-triazole ring (N2/C8/N3/N4/C9) is essentially planar, with maximum deviation of -0.013 (2) Å for atom N2. The 1,2,4-triazole ring is inclined at dihedral angles of 11.21 (10) and 67.53 (11)°, respectively, with fluorophenyl group (C1-C6/F1) and isobutyl-substituted benzene ring (C11-C16). The bond lengths and angles are consistent to those observed in closely related structures (Goh et al., 2010a,b).

In the crystal structure, no significant intermolecular hydrogen bonds are observed. The crystal structure is stabilized by a weak intermolecular C22—H22A···Cg1 interactions (Table 1) involving the 1,2,4-triazole ring.

Experimental

A mixture of Schiff base (0.01 mol) and formaldehyde (40 %, 2 ml) in ethanol (15 ml) was taken to this solution morpholine (0.01 mol) was added. The reaction mixture was stirred at room temperature for two days. The solid product obtained was collected by filtration, washed with ethanol and dried. Colourless single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of N,N-dimethylformamide and methanol by slow evaporation.

Refinement

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.98 Å, and refined using a riding model with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the C19, C20 and C21 methyl groups. The methanol solvent molecule is refined with a fixed occupancy of 0.5. The atom C27 of methanol solvent molecule is disordered over two positions with an equal occupancy of 0.25. Both the disordered components are further disordered over a crystallography two-fold rotation. A short intermolecular H15A···H27E interactions [2.04 Å] is also observed.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular hydrogen bond is shown as dashed line. The open bond in the solvent molecule indicates a disordered component.

Crystal data

C26H32FN5OS·0.5CH4O F(000) = 2120
Mr = 497.65 Dx = 1.273 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4090 reflections
a = 40.186 (3) Å θ = 2.3–29.3°
b = 4.7840 (3) Å µ = 0.16 mm1
c = 30.073 (2) Å T = 100 K
β = 116.112 (2)° Plate, colourless
V = 5191.5 (6) Å3 0.31 × 0.16 × 0.06 mm
Z = 8

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 5921 independent reflections
Radiation source: fine-focus sealed tube 4378 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −45→52
Tmin = 0.951, Tmax = 0.990 k = −6→6
24705 measured reflections l = −39→36

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0761P)2 + 4.918P] where P = (Fo2 + 2Fc2)/3
5921 reflections (Δ/σ)max < 0.001
337 parameters Δρmax = 0.63 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.088287 (13) 0.32232 (11) 0.024927 (18) 0.02279 (15)
F1 −0.03130 (3) 1.5045 (3) 0.10905 (5) 0.0353 (3)
O1 0.25668 (4) 0.2919 (3) 0.07215 (6) 0.0265 (3)
N1 0.09867 (4) 0.7033 (3) 0.12673 (6) 0.0176 (3)
N2 0.12134 (4) 0.4899 (3) 0.12369 (6) 0.0161 (3)
N3 0.15083 (4) 0.1724 (3) 0.10553 (6) 0.0172 (3)
N4 0.17235 (4) 0.2366 (4) 0.15492 (6) 0.0188 (4)
N5 0.19454 (4) 0.0176 (3) 0.07277 (6) 0.0174 (3)
C1 0.05201 (5) 1.1031 (4) 0.14003 (8) 0.0219 (4)
H1A 0.0759 1.0874 0.1654 0.026*
C2 0.02764 (6) 1.2953 (5) 0.14380 (8) 0.0252 (4)
H2A 0.0347 1.4080 0.1717 0.030*
C3 −0.00756 (6) 1.3156 (4) 0.10502 (8) 0.0247 (4)
C4 −0.01956 (6) 1.1530 (4) 0.06315 (8) 0.0242 (4)
H4A −0.0433 1.1730 0.0376 0.029*
C5 0.00502 (5) 0.9582 (5) 0.06043 (8) 0.0228 (4)
H5A −0.0026 0.8424 0.0328 0.027*
C6 0.04086 (5) 0.9323 (4) 0.09816 (7) 0.0187 (4)
C7 0.06528 (5) 0.7189 (4) 0.09341 (7) 0.0201 (4)
H7A 0.0566 0.5971 0.0666 0.024*
C8 0.11940 (5) 0.3259 (4) 0.08433 (7) 0.0172 (4)
C9 0.15399 (5) 0.4326 (4) 0.16470 (7) 0.0170 (4)
C10 0.16652 (5) 0.5789 (4) 0.21346 (7) 0.0176 (4)
H10A 0.1552 0.7650 0.2069 0.021*
C11 0.15292 (5) 0.4252 (4) 0.24672 (7) 0.0189 (4)
C12 0.17420 (6) 0.2223 (5) 0.28014 (8) 0.0248 (4)
H12A 0.1974 0.1772 0.2824 0.030*
C13 0.16132 (7) 0.0854 (5) 0.31034 (8) 0.0299 (5)
H13A 0.1762 −0.0478 0.3328 0.036*
C14 0.12667 (6) 0.1438 (4) 0.30763 (7) 0.0244 (5)
C15 0.10542 (6) 0.3483 (5) 0.27433 (7) 0.0253 (5)
H15A 0.0822 0.3929 0.2720 0.030*
C16 0.11845 (5) 0.4869 (5) 0.24448 (7) 0.0230 (4)
H16A 0.1038 0.6235 0.2226 0.028*
C17 0.11276 (7) −0.0019 (5) 0.34084 (8) 0.0287 (5)
H17A 0.1268 −0.1728 0.3532 0.034*
H17B 0.0871 −0.0539 0.3212 0.034*
C18 0.11550 (6) 0.1720 (5) 0.38489 (7) 0.0233 (4)
H18A 0.1010 0.3432 0.3721 0.028*
C19 0.09868 (7) 0.0110 (5) 0.41376 (9) 0.0335 (5)
H19A 0.0736 −0.0387 0.3920 0.050*
H19B 0.0990 0.1258 0.4401 0.050*
H19C 0.1129 −0.1556 0.4273 0.050*
C20 0.15534 (6) 0.2551 (6) 0.41852 (8) 0.0357 (6)
H20A 0.1647 0.3705 0.4004 0.054*
H20B 0.1703 0.0901 0.4299 0.054*
H20C 0.1561 0.3570 0.4465 0.054*
C21 0.20863 (5) 0.6187 (5) 0.23668 (8) 0.0245 (5)
H21A 0.2149 0.7449 0.2167 0.037*
H21B 0.2204 0.4415 0.2385 0.037*
H21C 0.2170 0.6945 0.2694 0.037*
C22 0.16324 (5) −0.0479 (4) 0.08182 (7) 0.0190 (4)
H22A 0.1692 −0.2133 0.1026 0.023*
H22B 0.1426 −0.0954 0.0504 0.023*
C23 0.18987 (6) 0.2658 (4) 0.04242 (8) 0.0224 (4)
H23A 0.1892 0.4312 0.0606 0.027*
H23B 0.1666 0.2543 0.0126 0.027*
C24 0.22178 (6) 0.2869 (5) 0.02871 (8) 0.0279 (5)
H24A 0.2211 0.1285 0.0082 0.033*
H24B 0.2192 0.4559 0.0096 0.033*
C25 0.26073 (5) 0.0439 (5) 0.10014 (8) 0.0249 (5)
H25A 0.2846 0.0452 0.1290 0.030*
H25B 0.2599 −0.1176 0.0802 0.030*
C26 0.23025 (5) 0.0222 (5) 0.11653 (8) 0.0230 (4)
H26A 0.2333 −0.1472 0.1357 0.028*
H26B 0.2314 0.1807 0.1373 0.028*
O2 0.00036 (14) 0.8833 (15) 0.27352 (18) 0.091 (2) 0.50
H2OA −0.0207 0.8835 0.2737 0.136* 0.25
H2OB −0.0184 0.8489 0.2463 0.136* 0.25
C27A 0.0135 (4) 1.187 (3) 0.2744 (6) 0.068 (4) 0.25
H27A −0.0076 1.3084 0.2593 0.102* 0.25
H27B 0.0281 1.2435 0.3082 0.102* 0.25
H27C 0.0282 1.1993 0.2566 0.102* 0.25
C27B 0.0229 (3) 0.616 (2) 0.2923 (4) 0.039 (2) 0.25
H27D 0.0065 0.4596 0.2860 0.059* 0.25
H27E 0.0383 0.5891 0.2757 0.059* 0.25
H27F 0.0382 0.6333 0.3272 0.059* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0194 (3) 0.0310 (3) 0.0140 (2) 0.0030 (2) 0.00371 (19) −0.00443 (19)
F1 0.0279 (7) 0.0307 (7) 0.0483 (8) 0.0099 (5) 0.0178 (6) −0.0043 (6)
O1 0.0207 (7) 0.0301 (8) 0.0299 (8) −0.0040 (6) 0.0123 (6) 0.0000 (6)
N1 0.0165 (8) 0.0198 (8) 0.0174 (8) 0.0025 (6) 0.0083 (6) −0.0002 (6)
N2 0.0150 (7) 0.0198 (8) 0.0132 (7) 0.0009 (6) 0.0059 (6) −0.0014 (6)
N3 0.0156 (8) 0.0230 (8) 0.0142 (8) 0.0007 (6) 0.0075 (6) −0.0014 (6)
N4 0.0177 (8) 0.0250 (9) 0.0142 (8) −0.0004 (6) 0.0075 (6) 0.0005 (6)
N5 0.0161 (8) 0.0208 (8) 0.0159 (8) 0.0013 (6) 0.0075 (6) 0.0009 (6)
C1 0.0187 (9) 0.0219 (10) 0.0233 (10) −0.0005 (8) 0.0075 (8) −0.0008 (8)
C2 0.0254 (11) 0.0245 (10) 0.0260 (11) −0.0019 (8) 0.0115 (9) −0.0062 (8)
C3 0.0215 (10) 0.0218 (10) 0.0345 (12) 0.0057 (8) 0.0157 (9) 0.0018 (9)
C4 0.0179 (9) 0.0293 (11) 0.0231 (10) 0.0031 (8) 0.0068 (8) 0.0049 (8)
C5 0.0204 (10) 0.0277 (11) 0.0192 (10) 0.0008 (8) 0.0078 (8) −0.0004 (8)
C6 0.0172 (9) 0.0206 (9) 0.0187 (9) 0.0018 (7) 0.0085 (8) 0.0025 (7)
C7 0.0177 (9) 0.0246 (10) 0.0176 (9) −0.0003 (8) 0.0075 (8) −0.0021 (8)
C8 0.0169 (9) 0.0190 (9) 0.0177 (9) −0.0012 (7) 0.0095 (7) −0.0011 (7)
C9 0.0149 (9) 0.0220 (9) 0.0145 (9) −0.0005 (7) 0.0070 (7) 0.0028 (7)
C10 0.0168 (9) 0.0208 (9) 0.0139 (9) 0.0007 (7) 0.0056 (7) −0.0001 (7)
C11 0.0218 (10) 0.0217 (9) 0.0129 (9) −0.0031 (8) 0.0074 (7) −0.0045 (7)
C12 0.0277 (11) 0.0263 (11) 0.0235 (10) 0.0067 (8) 0.0140 (9) 0.0010 (8)
C13 0.0408 (13) 0.0260 (11) 0.0250 (11) 0.0077 (10) 0.0165 (10) 0.0055 (9)
C14 0.0328 (11) 0.0226 (10) 0.0187 (10) −0.0064 (8) 0.0121 (9) −0.0048 (8)
C15 0.0216 (10) 0.0357 (12) 0.0186 (10) −0.0042 (9) 0.0089 (8) −0.0011 (9)
C16 0.0189 (9) 0.0312 (11) 0.0154 (9) −0.0011 (8) 0.0044 (8) 0.0009 (8)
C17 0.0397 (13) 0.0253 (11) 0.0251 (11) −0.0080 (9) 0.0179 (10) −0.0020 (9)
C18 0.0251 (10) 0.0274 (11) 0.0192 (10) −0.0006 (8) 0.0113 (8) 0.0010 (8)
C19 0.0372 (13) 0.0399 (13) 0.0294 (12) −0.0025 (10) 0.0200 (10) 0.0032 (10)
C20 0.0314 (12) 0.0520 (16) 0.0233 (11) −0.0063 (11) 0.0117 (10) −0.0046 (10)
C21 0.0172 (10) 0.0330 (12) 0.0207 (10) −0.0027 (8) 0.0059 (8) −0.0017 (8)
C22 0.0194 (9) 0.0194 (9) 0.0195 (9) −0.0007 (7) 0.0096 (8) −0.0033 (7)
C23 0.0211 (10) 0.0268 (11) 0.0211 (10) 0.0020 (8) 0.0108 (8) 0.0040 (8)
C24 0.0252 (11) 0.0366 (12) 0.0249 (11) −0.0015 (9) 0.0139 (9) 0.0040 (9)
C25 0.0179 (10) 0.0286 (11) 0.0272 (11) 0.0010 (8) 0.0092 (8) −0.0008 (9)
C26 0.0172 (9) 0.0282 (11) 0.0222 (10) 0.0011 (8) 0.0073 (8) 0.0025 (8)
O2 0.056 (3) 0.165 (6) 0.056 (3) −0.004 (4) 0.031 (3) 0.012 (3)
C27A 0.056 (8) 0.060 (8) 0.092 (11) −0.010 (6) 0.037 (7) −0.019 (7)
C27B 0.038 (5) 0.057 (7) 0.030 (5) −0.009 (5) 0.021 (4) 0.003 (5)

Geometric parameters (Å, °)

S1—C8 1.6699 (19) C16—H16A 0.9300
F1—C3 1.358 (2) C17—C18 1.527 (3)
O1—C25 1.422 (3) C17—H17A 0.9700
O1—C24 1.436 (3) C17—H17B 0.9700
N1—C7 1.276 (2) C18—C20 1.523 (3)
N1—N2 1.398 (2) C18—C19 1.523 (3)
N2—C9 1.376 (2) C18—H18A 0.9800
N2—C8 1.393 (2) C19—H19A 0.9600
N3—C8 1.354 (2) C19—H19B 0.9600
N3—N4 1.385 (2) C19—H19C 0.9600
N3—C22 1.477 (2) C20—H20A 0.9600
N4—C9 1.304 (3) C20—H20B 0.9600
N5—C22 1.434 (2) C20—H20C 0.9600
N5—C23 1.458 (3) C21—H21A 0.9600
N5—C26 1.459 (2) C21—H21B 0.9600
C1—C2 1.384 (3) C21—H21C 0.9600
C1—C6 1.399 (3) C22—H22A 0.9700
C1—H1A 0.9300 C22—H22B 0.9700
C2—C3 1.385 (3) C23—C24 1.513 (3)
C2—H2A 0.9300 C23—H23A 0.9700
C3—C4 1.374 (3) C23—H23B 0.9700
C4—C5 1.387 (3) C24—H24A 0.9700
C4—H4A 0.9300 C24—H24B 0.9700
C5—C6 1.392 (3) C25—C26 1.512 (3)
C5—H5A 0.9300 C25—H25A 0.9700
C6—C7 1.466 (3) C25—H25B 0.9700
C7—H7A 0.9300 C26—H26A 0.9700
C9—C10 1.498 (3) C26—H26B 0.9700
C10—C11 1.524 (3) O2—O2i 1.402 (10)
C10—C21 1.532 (3) O2—C27B 1.522 (13)
C10—H10A 0.9800 O2—C27A 1.543 (15)
C11—C12 1.388 (3) O2—H2OA 0.8503
C11—C16 1.389 (3) O2—H2OB 0.8499
C12—C13 1.391 (3) C27A—C27Ai 1.39 (3)
C12—H12A 0.9300 C27A—H27A 0.9600
C13—C14 1.387 (3) C27A—H27B 0.9600
C13—H13A 0.9300 C27A—H27C 0.9602
C14—C15 1.392 (3) C27B—H27D 0.9600
C14—C17 1.513 (3) C27B—H27E 0.9602
C15—C16 1.390 (3) C27B—H27F 0.9601
C15—H15A 0.9300
C25—O1—C24 109.65 (16) C18—C19—H19A 109.5
C7—N1—N2 118.83 (16) C18—C19—H19B 109.5
C9—N2—C8 108.91 (15) H19A—C19—H19B 109.5
C9—N2—N1 118.60 (15) C18—C19—H19C 109.5
C8—N2—N1 132.25 (15) H19A—C19—H19C 109.5
C8—N3—N4 113.44 (15) H19B—C19—H19C 109.5
C8—N3—C22 127.08 (16) C18—C20—H20A 109.5
N4—N3—C22 119.48 (15) C18—C20—H20B 109.5
C9—N4—N3 104.66 (15) H20A—C20—H20B 109.5
C22—N5—C23 114.50 (15) C18—C20—H20C 109.5
C22—N5—C26 115.40 (16) H20A—C20—H20C 109.5
C23—N5—C26 110.90 (16) H20B—C20—H20C 109.5
C2—C1—C6 120.26 (18) C10—C21—H21A 109.5
C2—C1—H1A 119.9 C10—C21—H21B 109.5
C6—C1—H1A 119.9 H21A—C21—H21B 109.5
C1—C2—C3 118.35 (19) C10—C21—H21C 109.5
C1—C2—H2A 120.8 H21A—C21—H21C 109.5
C3—C2—H2A 120.8 H21B—C21—H21C 109.5
F1—C3—C4 118.77 (19) N5—C22—N3 116.51 (16)
F1—C3—C2 117.96 (19) N5—C22—H22A 108.2
C4—C3—C2 123.26 (19) N3—C22—H22A 108.2
C3—C4—C5 117.56 (19) N5—C22—H22B 108.2
C3—C4—H4A 121.2 N3—C22—H22B 108.2
C5—C4—H4A 121.2 H22A—C22—H22B 107.3
C4—C5—C6 121.33 (19) N5—C23—C24 109.50 (17)
C4—C5—H5A 119.3 N5—C23—H23A 109.8
C6—C5—H5A 119.3 C24—C23—H23A 109.8
C5—C6—C1 119.22 (18) N5—C23—H23B 109.8
C5—C6—C7 118.64 (18) C24—C23—H23B 109.8
C1—C6—C7 122.11 (17) H23A—C23—H23B 108.2
N1—C7—C6 118.84 (18) O1—C24—C23 111.04 (17)
N1—C7—H7A 120.6 O1—C24—H24A 109.4
C6—C7—H7A 120.6 C23—C24—H24A 109.4
N3—C8—N2 102.32 (15) O1—C24—H24B 109.4
N3—C8—S1 127.05 (15) C23—C24—H24B 109.4
N2—C8—S1 130.55 (14) H24A—C24—H24B 108.0
N4—C9—N2 110.62 (16) O1—C25—C26 110.62 (17)
N4—C9—C10 125.22 (17) O1—C25—H25A 109.5
N2—C9—C10 124.16 (17) C26—C25—H25A 109.5
C9—C10—C11 110.73 (16) O1—C25—H25B 109.5
C9—C10—C21 109.42 (16) C26—C25—H25B 109.5
C11—C10—C21 113.83 (16) H25A—C25—H25B 108.1
C9—C10—H10A 107.5 N5—C26—C25 108.87 (17)
C11—C10—H10A 107.5 N5—C26—H26A 109.9
C21—C10—H10A 107.5 C25—C26—H26A 109.9
C12—C11—C16 117.86 (19) N5—C26—H26B 109.9
C12—C11—C10 121.88 (18) C25—C26—H26B 109.9
C16—C11—C10 120.27 (18) H26A—C26—H26B 108.3
C11—C12—C13 120.9 (2) O2i—O2—C27B 96.8 (5)
C11—C12—H12A 119.5 O2i—O2—C27A 82.7 (6)
C13—C12—H12A 119.5 C27B—O2—C27A 129.9 (7)
C14—C13—C12 121.3 (2) O2i—O2—H2OA 115.4
C14—C13—H13A 119.4 C27B—O2—H2OA 115.5
C12—C13—H13A 119.4 C27A—O2—H2OA 109.4
C13—C14—C15 117.8 (2) O2i—O2—H2OB 54.0
C13—C14—C17 121.4 (2) C27B—O2—H2OB 108.9
C15—C14—C17 120.7 (2) C27A—O2—H2OB 110.6
C16—C15—C14 120.9 (2) H2OA—O2—H2OB 62.8
C16—C15—H15A 119.5 C27Ai—C27A—O2 83.1 (7)
C14—C15—H15A 119.5 C27Ai—C27A—H27A 52.0
C11—C16—C15 121.21 (19) O2—C27A—H27A 109.7
C11—C16—H16A 119.4 C27Ai—C27A—H27B 161.2
C15—C16—H16A 119.4 O2—C27A—H27B 109.1
C14—C17—C18 114.54 (18) H27A—C27A—H27B 109.5
C14—C17—H17A 108.6 C27Ai—C27A—H27C 78.2
C18—C17—H17A 108.6 O2—C27A—H27C 109.6
C14—C17—H17B 108.6 H27A—C27A—H27C 109.5
C18—C17—H17B 108.6 H27B—C27A—H27C 109.5
H17A—C17—H17B 107.6 O2—C27B—H27D 109.8
C20—C18—C19 110.73 (18) O2—C27B—H27E 109.7
C20—C18—C17 111.82 (18) H27D—C27B—H27E 109.5
C19—C18—C17 109.78 (18) O2—C27B—H27F 108.9
C20—C18—H18A 108.1 H27D—C27B—H27F 109.5
C19—C18—H18A 108.1 H27E—C27B—H27F 109.4
C17—C18—H18A 108.1
C7—N1—N2—C9 −165.16 (18) N2—C9—C10—C21 −143.00 (19)
C7—N1—N2—C8 21.2 (3) C9—C10—C11—C12 92.1 (2)
C8—N3—N4—C9 0.2 (2) C21—C10—C11—C12 −31.6 (3)
C22—N3—N4—C9 −179.21 (16) C9—C10—C11—C16 −88.2 (2)
C6—C1—C2—C3 −0.8 (3) C21—C10—C11—C16 148.00 (19)
C1—C2—C3—F1 179.92 (19) C16—C11—C12—C13 0.1 (3)
C1—C2—C3—C4 0.5 (3) C10—C11—C12—C13 179.68 (19)
F1—C3—C4—C5 −178.78 (19) C11—C12—C13—C14 0.9 (3)
C2—C3—C4—C5 0.7 (3) C12—C13—C14—C15 −1.3 (3)
C3—C4—C5—C6 −1.5 (3) C12—C13—C14—C17 −179.2 (2)
C4—C5—C6—C1 1.2 (3) C13—C14—C15—C16 0.6 (3)
C4—C5—C6—C7 178.98 (19) C17—C14—C15—C16 178.64 (19)
C2—C1—C6—C5 0.0 (3) C12—C11—C16—C15 −0.7 (3)
C2—C1—C6—C7 −177.7 (2) C10—C11—C16—C15 179.70 (18)
N2—N1—C7—C6 176.41 (16) C14—C15—C16—C11 0.3 (3)
C5—C6—C7—N1 176.71 (19) C13—C14—C17—C18 101.5 (2)
C1—C6—C7—N1 −5.5 (3) C15—C14—C17—C18 −76.4 (3)
N4—N3—C8—N2 −1.5 (2) C14—C17—C18—C20 −60.0 (3)
C22—N3—C8—N2 177.79 (17) C14—C17—C18—C19 176.70 (19)
N4—N3—C8—S1 175.59 (14) C23—N5—C22—N3 −57.1 (2)
C22—N3—C8—S1 −5.1 (3) C26—N5—C22—N3 73.4 (2)
C9—N2—C8—N3 2.3 (2) C8—N3—C22—N5 109.5 (2)
N1—N2—C8—N3 176.42 (18) N4—N3—C22—N5 −71.3 (2)
C9—N2—C8—S1 −174.70 (16) C22—N5—C23—C24 −171.03 (17)
N1—N2—C8—S1 −0.6 (3) C26—N5—C23—C24 56.2 (2)
N3—N4—C9—N2 1.3 (2) C25—O1—C24—C23 59.4 (2)
N3—N4—C9—C10 −178.07 (17) N5—C23—C24—O1 −56.9 (2)
C8—N2—C9—N4 −2.4 (2) C24—O1—C25—C26 −60.8 (2)
N1—N2—C9—N4 −177.45 (16) C22—N5—C26—C25 170.28 (17)
C8—N2—C9—C10 177.03 (17) C23—N5—C26—C25 −57.4 (2)
N1—N2—C9—C10 2.0 (3) O1—C25—C26—N5 59.8 (2)
N4—C9—C10—C11 −89.9 (2) O2i—O2—C27A—C27Ai 41.1 (11)
N2—C9—C10—C11 90.7 (2) C27B—O2—C27A—C27Ai 133.9 (10)
N4—C9—C10—C21 36.3 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the 1,2,4-triazole ring (N2/C8/N3/N4/C9).
D—H···A D—H H···A D···A D—H···A
C7—H7A···S1 0.93 2.51 3.221 (2) 133
C22—H22A···Cg1ii 0.97 2.64 3.492 (2) 146

Symmetry codes: (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5026).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Calhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A. & Shepherd, R. G. (1995). J. Med. Chem.38, 1473–1481. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010a). Acta Cryst. E66, o83–o84. [DOI] [PMC free article] [PubMed]
  6. Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010b). Acta Cryst. E66, o89–o90. [DOI] [PMC free article] [PubMed]
  7. Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). J. Pharm. Sci.9, 25–31. [DOI] [PubMed]
  8. Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Arzneim Forsch.50, 55–59. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Sujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem.44, 3697–3702. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015217/lh5026sup1.cif

e-66-o1233-sup1.cif (27.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015217/lh5026Isup2.hkl

e-66-o1233-Isup2.hkl (290KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES