Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 21;66(Pt 5):m546–m547. doi: 10.1107/S1600536810013772

Trichlorido{2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1-trimethyl­silyl-1H-imidazole-κN 3}titanium(IV) tetra­hydro­furan hemisolvate

Fang Ge a,b,, Wanli Nie a,b, Maxim V Borzov a,b,*, Andrei V Churakov c
PMCID: PMC2979113  PMID: 21579034

Abstract

The title compound, [Ti(C15H23N2Si)Cl3]·0.5C4H8O, has been prepared from {2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN 1}bis­(N,N-diethyl­amido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, by reaction with excess of Me3SiCl in tetra­hydro­furan (THF) at 353 K. The crystal structure contains THF as adduct solvent, disordered around a center of inversion. The presence of THF and the adduct ratio has been independently supported by 1H NMR spectroscopy. The coordination polyhedron of the Ti atom is distorted square-pyramidal, assuming the cyclo­penta­dienyl (Cp) ring occupies one coordination site. The Ti, Si and CH2 group C atoms only deviate slightly from the imidazole ring plane [by 0.021 (4), 0.133 (4) and 0.094 (4) Å, respectively]. Comparison of the principal geometric parameters with those of the few known structurally characterized analogues reveal small differences in bond lengths and angles at the Ti atom. The title complex is only stable in THF-d 8 in the presence of excess Me3SiCl, otherwise it exists in an equilibrium with equimolar amounts of dichlorido{2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN 3}titanium(IV) and chloro­trimethyl­silane.

Related literature

For a description of cyclo­penta­dienes with pendant 1H-imidazol(in)-2-yl side-chain functional groups and group 4 transition metal complexes of general type [η5-Cp-(CPh2CH2)-imidazol(in)e)-κN 3]-M IVCl3 (M = Ti, Zr) , see: Krut’ko et al. (2006); Nie et al. (2008). For the geometric parameters of structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type, see: trichloro­{2-[2-(η5-cyclo­penta­dien­yl)-2,2-diphenyl­ethyl]-1-methyl-1H-imidazole-κN 3}titanium(IV), C23H21Cl3N2Ti (Krut’ko et al., 2006); trichloro­{1-[2-(η5-cyclo­penta­dien­yl)eth­yl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi (Herrmann et al., 1995); trichloro­[8-(η5-2,3,4,5-tetra­methyl­cyclo­penta­dien­yl)quinoline-κN]titanium(IV), C18H18Cl3NTi (Enders et al., 1997); trichloro­[8-(η5-2,3-dimethyl­cyclo­penta­dien­yl)quinoline-κN]titanium(IV), C16H14Cl3NTi (Enders et al., 1996). For the preparation of [2-[2-(η5-cyclo­penta­dien­yl)-2-methyl­prop­yl]-1H-imidazolyl-κN 1]bis­(N,N-di­ethyl­amido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, see: Wang et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-66-0m546-scheme1.jpg

Experimental

Crystal data

  • [Ti(C15H23N2Si)Cl3]·0.5C4H8O

  • M r = 449.75

  • Monoclinic, Inline graphic

  • a = 8.8033 (9) Å

  • b = 11.8201 (11) Å

  • c = 21.481 (2) Å

  • β = 99.399 (1)°

  • V = 2205.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.29 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.798, T max = 0.894

  • 10736 measured reflections

  • 3869 independent reflections

  • 2812 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.115

  • S = 1.02

  • 3869 reflections

  • 249 parameters

  • 70 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL, OLEX2 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013772/nc2182sup1.cif

e-66-0m546-sup1.cif (28.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013772/nc2182Isup2.hkl

e-66-0m546-Isup2.hkl (189.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Geometrical parameters (Å, °) of the environment of the Ti atom in the title compound compared with those of related structures.

  (I) (III) (IV) (V) (VI)
Ti1—N2 2.153 (2) 2.163 (2) 2.357 (1) 2.274 (4) 2.261 (2)
Ti1—Cl1 2.3475 (9) 2.3513 (8) 2.3217 (4) 2.322 (2) 2.331 (1)
Ti1—Cl2 2.3377 (10) 2.3486 (8) 2.3729 (5) 2.326 (2) 2.338 (1)
Ti1—Cl3 2.3533 (9) 2.3340 (8) 2.2895 (5) 2.300 (2) 2.307 (1)
Ti1⋯Cpcent 2.030 (1) 2.036 2.025 2.035 2.047
Ti1⋯PL1 2.029 (1) 2.034 (1) 2.025 2.034 2.046
Ti1⋯PL2 0.022 (5) 0.608   0.175 0.215
N2—Ti1⋯Cpcent 111.2 (1)a 110.20 99.66 101.44 101.64
Cl1—Ti1⋯Cpcent 109.2 (1)a 110.08 116.37 116.68 113.90
Cl2—Ti1⋯Cpcent 110.69 (9)a 109.75 107.63 109.28 109.73
Cl3—Ti1⋯Cpcent 110.58 (9)a 110.93 114.71 113.76 115.56
Cl1—Ti1—N2 80.79 (7) 79.24 (6) 82.57 (2) 78.64 80.32
Cl2—Ti1—N2 138.10 (6) 140.05 (6) 152.70 (3) 149.27 148.63
Cl3—Ti1—N2 80.82 (7) 81.19 (6) 83.45 (2) 80.23 78.94
Cl2—Ti1—Cl1 85.38 (4) 86.06 (3) 85.18 (2) 87.84 87.14
Cl2—Ti1—Cl3 85.07 (4) 86.01 (3) 85.30 (2) 86.95 87.20
Cl3—Ti1—Cl1 139.98 (4) 138.52 (3) 128.55 (2) 128.07 129.12
PL1–PL2 81.0 (1) 78.335   82.491 85.895

Notes: (a) the angle between the Ti1—N2 bond and the normal to PL1; (I) this work; (III) Krut’ko et al. (2006); (IV) Herrmann et al. (1995); (V) Enders et al. (1997); (VI) Enders et al. (1996). PL1 and Cpcent denote the C11–C15 Cp ring r.m.s. plane and centroid, respectively, while PL2 denotes an r.m.s. plane through the non-H atoms of a heterocyclic ring.

Acknowledgments

Financial support from the National Natural Science Foundation of China (project No. 20702041), Shaanxi Provincial Department of Education (grant Nos. 09 J K733 and 07 J K393), Shaanxi Administration of Foreign Expert Affairs (grant No. 20096100097) and Shaanxi Provincial Department of Science and Technology (grant No. 2007B05) is gratefully acknowledged. The authors are grateful to Mr Sun Wei for his help in measuring the NMR spectra.

supplementary crystallographic information

Comment

Cyclopentadienes (Cp-s) with pendant 1H-imidazol(in)-2-yl side-chain functional groups and the Group 4 transition metal complexes of general type [η5-Cp-(C2-link)-imidazol(in)e)-κN3]-MIVCl3 (M = Ti, Zr), (A), based on them were described not long ago (Krut'ko et al., 2006; Nie et al., 2008). All Ti and Zr complexes reported in these papers possess Me-groups at the N1 atoms and were prepared by reactions of metal tetrachlorides with monolithium- or trimethylsilyl-derivatives of parent cyclopentadienes. Recently a synthetic approach to η5-Cp-tris(sec-amido)TiIV type complexes of general formula [η5-Cp-(C1 or 2-link)-imidazolyl-κN1]-MIV(NEt2)2, (B), was suggested (Wang et al., 2009). Here we report on the crystal structure of trichloro{2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1-trimethylsilyl-1H-imidazole-κN3}titanium(IV) that crystallizes as an 1:0.5 adduct with tetrahydrofuran (THF) (I), which was prepared by a reaction with chlorotrimethylsilane via a facile (B) to (A) conversion method. The molecular structure of (I) is discussed in comparison with those of its few known analogues.

Complex (I) was prepared by treatment of [2-[2-(η5-cyclopentadienyl)-2-methylpropyl]-1H-imidazolyl-κN1]bis(N,N-diethylamido-κN)titanium(IV), (C12H14N2)Ti(NEt2)2, (II), with excess of Me3SiCl in a THF medium at elevated temperature (see Fig. 2 and Experimental for details). The presence of THF in the crystal and the adduct ratio were not evident in the structure solution and refinement stages but were independently supported by 1H NMR spectroscopy data [multiplets at δ(H) 1.78 and 3.62 p.p.m. with both of the relative integral intensities corresponding to 2 H]. The THF molecule was found and located using SQUEEZE in the PLATON program package (Spek, 2009) which retrieved two voids at (1/2, 0, 1/2) and (1/2, 1/2, 1) (each of 180 Å3 and 42ē; total electron count per unit cell 84ē). In the final structure model, the adduct solvent molecule was treated as disordered around a center of inversion (1/2, 0, 1/2) (see Refinement section for details).

An analysis in the Cambridge Structural Database (CSD; Version 5.27, release February 2009; Allen, 2002) reveals only 4 structurally characterized TiIV complexes of the similar η5-CpTiCl3-NRn type (4 independent fragments): trichloro{2-[2-(η5-cyclopentadienyl)-2,2-diphenylethyl]-1-methyl-1H-imidazole-κN3}titanium(IV), C23H21Cl3N2Ti, (III), (Krut'ko et al., 2006); trichloro{1-[2-(η5-cyclopentadienyl)ethyl]pyrrolidine-κN}titanium(IV), C11H16Cl3NTi, (IV), (Herrmann et al., 1995); trichloro[8-(η5-2,3,4,5-tetramethylcyclopentadienyl)quinoline-κN]titanium(IV), C18H18Cl3NTi, (V), (Enders et al., 1997); and trichloro[8-(η5-2,3-dimethylcyclopentadienyl)quinoline-κN]titanium(IV), C16H14Cl3NTi, (VI), (Enders et al., 1996).

All complexes of question exhibit one and the same structural motif. They are mononuclear complexes, with the coordination environment of the Ti-atoms being a distorted square pyramid (assuming Cp-rings occupy one coordination site; "four-leg piano stool"). Contents of the unit cells are presented by pairs of enantiomorphic conformers connected by inversion symmetry operations. In all complexes under discussion, ligating N-atoms are linked to Cp-groups with a C2 [(IV)-(VI)] or C3 [(I) and (III)] bridges. Noteworthy, that no structurally characterized complexes of type η5-CpTiCl3-NRn with a non-linked to Cp NRn functionality are known at the moment.

Compounds (I) and (III) represent a pair of the "closest relatives", and, despite of the evident differences in their chemical structure (CPh2 against CMe2 and NMe against NSiMe3), the geometrical parameters of the coordination environment of the Ti-atoms and imidazole rings nearly match (see Table 1). This is the same for the torsion angles in the bridge [C4—C5—C11—C12 and C1—C4—C5—C11 in (I) and the related angles in (III); compare –136.8 (3) and 64.3 (3)° in (I) with –135.21 (4) and 61.22 (5)° in (III)]. However, while in the main molecule of (I), the Ti-, Si- and CH2-group carbon atoms deviate only slightly from the imidazole ring r. m. s. plane [PL2; by 0.022 (5), 0.133 (4) and 0.094 (5) Å, respectively], the Ti-atom in (III) noticeably deviates from the imidazole r. m. s. plane (by 0.608 Å) what could be, at the first glance, explained by a mutual repulsion of the spatially adjacent imidazole and phenyl rings. Another difference in the crystal structures of (I) and (III) is due to the presence of a bulky SiMe3 group in (I). These groups are stretched outwards of the main molecule and "pump up" the unit cell volume [compare V = 2205.2 (4) Å3 in (I) with 2098.8, 1304.8, 1567.9, and 1749.9 Å3 in (III)-(VI), respectively] what causes appearance of voids suitable for THF molecules.

Elongation of the bridge from C2 [in (IV)-(VI)] to C3 [in (I) and (III)] has a little effect on the Ti1—PL1 (or Cpcent; PL1 and Cpcent denote r.m.s. plane and centroid of the Cp-ring, respectively) distances, as well as on the angle Cl2–Ti1–Cpcent and "cis-angles" Cl2–Ti1–Cl1, Cl2–Ti1–Cl3, Cl1–Ti1–N2, and Cl3–Ti1–N2. However, the angles N2–Ti1–Cpcent in (I) and (III) are expanded by approximately 10° compared to those in (IV)-(VI) while the "trans-angle" Cl2–Ti1–N2 is tightened by the same value. The angles Cl1–Ti1–Cpcent and Cl3–Ti1–Cpcent in (I) and (III) are decreased by approximately 5° comparatively to those in (IV)-(VI) while the "trans-angle" Cl1–Ti1–Cl3 is increased by approximately 10°.

Experimental

All operations were performed in all-sealed evacuated glass vessels with application of the high-vacuum line (the residual pressure of non-condensible gases within 1.5–1.0×10 -3 Torr range, 1 Torr = 133.322 Pa). Complex (II) was prepared as described in our earlier work (Wang et al., 2009). THF and THF-d8 were kept with disodium benzophenone ketyl and transferred into reaction vessels and/or NMR tubes on the high-vacuum line by trapping the vapour with liq. N2. Chlorotrimethylsilane was refluxed with and kept over CaH2 and transferred into reaction vessels in a similar way. — NMR spectra were recorded on Varian INOVA-400 instrument. For 13C{1H}and 1H NMR spectra, the 13C and residual proton resonance of the d-solvent [δH = 1.73 and δC = 25.3 (THF-d8)] were used as internal reference standards.

Complex (I): To a solution of (II) (0.282 g, 0.75 mmol) in THF (20 ml), an excess of Me3SiCl (0.6 ml, 4.71 mmol) was added at approx. 253 K. An immediate precipitation of a yellow fine-crystalline solid occurred. The reaction mixture was then heated at 353 K until all the solid dissolved, the volume was reduced two times and the mother liquor was allowed to cool gradually along with the water bath down to ambient temperature. On the walls of the reaction vessel well formed bright-orange crystals grew. The orange mother liquor was removed from the crystals by decantation, the solid was rinsed once with cold (253 K) THF and the crystals were quickly dried by trapping all volatiles with liquid N2. Yield 0.275 g (82%). — 1H NMR (THF-d8, 296 K): δ = 0.58 [s, 9 H, Si(CH3)3], 1.30 [s, 6 H, C(CH3)2], 1.78 (m, 2 H, 3- and 4-CH2 in THF), 3.25 (s, CH2), 3.62 (broadened m, 2 H, 2- and 5-CH2 in THF), 6.91 (broadened m, 4 H, C5H4), 6.95, 7.52 (both broadened d, 1 H + 1 H, 3JHH = 2.3 Hz, CH in imidazole). — 13C{1H} NMR (THF-d8, 296 K): δ = 0.09 [Si(CH3)3], 28.81 (C(CH3)2), 36.11 (CH2), 41.72 [C(CH3)2], 119.99, 131.05 (CH in imidazole), 122.71, 124.49 (CH in C5H4, double intensity), 145.72 (C in C5H4), 149.73 (C in imidazole). — Admixture of (VII): 1H NMR (THF-d8, 296 K): δ = 1.26 [s, 6 H, C(CH3)2], 3.15 (s, CH2), 6.87, 6.92 (both broadened virt. t, 4 H, 3 + 4JHH =2.7 Hz, C5H4), 6.96, 7.48 (both broadened unresolved d, 1 H + 1 H, CH in imidazole). — Admixture of Me3SiCl: 1H NMR (THF-d8, 296 K): δ = 0.41 [s, 9 H, Si(CH3)3]. — 13C{1H} NMR (THF-d8, 296 K): δ = 3.10 [Si(CH3)3]. Content of complex (VII) and Me3SiCl in the reaction mixture is 16% (mol.) Low concentration of (VII) made its signals in 13C{1H} NMR spectrum of the equilibrium mixture invisible.

Single crystal of I suitable for X-ray diffraction analysis were picked up directly from the isolated materials (N2-filled glove-box) and mounted inside a Lindemann glass capillary (diameter 0.5 mm).

Refinement

The non-H atoms were refined anisotropically. The H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), 0.97 (CH2), 0.93 Å (CArH), and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C), and 1.2 Ueq(C), respectively. The THF molecule is disordered around inversion center (1/2, 0, 1/2) and was treated with a "PART -1" instruction and sof constrained to 0.5. O—C, (O)C—C, C—C 1,2-distances and corresponding 1,3-distances were restrained to 1.421 (6), 1.482 (6), 1.498 (6) and 2.329 (10), 2.344 (10), 2.302 (10) Å, respectively [DFIX instructions; distance values and their standard uncertainties (su-s) were chosen on the basis of the statistical analysis of the CSD (Version 5.27, release February 2009; Allen, 2002) for non-disordered solvent THF molecules (Rmax = 5.0; 70 hits and 99 fragments; 61 fragments used for statistical analysis on rejecting hits with pathological fragments)]. Non-hydrogen atoms of the disordered THF molecule were restrained to behave approximately isotropically with su 0.01 Å2 (ISOR instruction). The anisotropic displacement parameters (ADP-s) for these atoms were restrained to be the same with su of 0.01 Å2 (SIMU instruction).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound (I) with labelling and thermal ellipsoids drawn at the 50% probability level. H-atoms are omitted for clarity.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

[Ti(C15H23N2Si)Cl3]·0.5C4H8O F(000) = 936
Mr = 449.75 Dx = 1.355 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2833 reflections
a = 8.8033 (9) Å θ = 2.6–24.1°
b = 11.8201 (11) Å µ = 0.81 mm1
c = 21.481 (2) Å T = 293 K
β = 99.399 (1)° Block, orange
V = 2205.2 (4) Å3 0.29 × 0.21 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 3869 independent reflections
Radiation source: fine-focus sealed tube 2812 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 8.333 pixels mm-1 θmax = 25.0°, θmin = 1.9°
phi and ω scans h = −10→6
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→14
Tmin = 0.798, Tmax = 0.894 l = −24→25
10736 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0702P)2] where P = (Fo2 + 2Fc2)/3
3869 reflections (Δ/σ)max < 0.001
249 parameters Δρmax = 0.42 e Å3
70 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ti1 0.43495 (6) 0.55311 (4) 0.32607 (2) 0.03818 (17)
Cl1 0.38088 (10) 0.37906 (7) 0.37034 (4) 0.0627 (3)
Cl2 0.67102 (10) 0.47125 (8) 0.31535 (5) 0.0702 (3)
Cl3 0.57958 (10) 0.71852 (7) 0.35301 (4) 0.0566 (2)
Si1 0.00773 (10) 0.73534 (8) 0.49770 (4) 0.0542 (3)
N1 0.1676 (2) 0.67619 (19) 0.46582 (10) 0.0396 (5)
N2 0.3202 (2) 0.61390 (19) 0.40069 (10) 0.0391 (5)
C1 0.1772 (3) 0.6447 (2) 0.40551 (12) 0.0352 (6)
C2 0.3137 (3) 0.6600 (3) 0.50049 (13) 0.0491 (8)
H2 0.3426 0.6725 0.5435 0.059*
C3 0.4050 (3) 0.6234 (3) 0.46088 (13) 0.0487 (8)
H3 0.5092 0.6069 0.4719 0.058*
C4 0.0459 (3) 0.6406 (2) 0.35326 (12) 0.0401 (7)
H4B −0.0408 0.6794 0.3663 0.048*
H4A 0.0164 0.5623 0.3451 0.048*
C5 0.0790 (3) 0.6941 (3) 0.29174 (13) 0.0424 (7)
C6 −0.0695 (4) 0.6866 (3) 0.24248 (14) 0.0637 (10)
H6B −0.0565 0.7290 0.2056 0.096*
H6C −0.1542 0.7172 0.2601 0.096*
H6A −0.0902 0.6089 0.2311 0.096*
C7 0.1269 (4) 0.8181 (3) 0.30352 (16) 0.0567 (8)
H7B 0.2190 0.8216 0.3343 0.085*
H7C 0.0460 0.8586 0.3188 0.085*
H7A 0.1457 0.8517 0.2648 0.085*
C8 −0.1419 (4) 0.6251 (4) 0.4950 (2) 0.0828 (12)
H8A −0.1668 0.5961 0.4528 0.124*
H8C −0.2325 0.6572 0.5075 0.124*
H8B −0.1043 0.5648 0.5232 0.124*
C9 −0.0605 (5) 0.8622 (3) 0.45119 (18) 0.0730 (11)
H9B 0.0263 0.9042 0.4418 0.110*
H9C −0.1193 0.9089 0.4751 0.110*
H9A −0.1241 0.8396 0.4126 0.110*
C10 0.0866 (5) 0.7784 (5) 0.57934 (18) 0.1059 (17)
H10A 0.1331 0.7143 0.6024 0.159*
H10C 0.0050 0.8071 0.5996 0.159*
H10B 0.1627 0.8364 0.5785 0.159*
C11 0.2036 (3) 0.6279 (3) 0.26614 (12) 0.0424 (7)
C12 0.3285 (4) 0.6727 (3) 0.24110 (13) 0.0528 (8)
H12 0.3546 0.7489 0.2402 0.063*
C13 0.4073 (4) 0.5834 (4) 0.21778 (15) 0.0704 (11)
H13 0.4951 0.5897 0.1991 0.084*
C14 0.3307 (5) 0.4838 (4) 0.22756 (16) 0.0705 (11)
H14 0.3578 0.4115 0.2162 0.085*
C15 0.2056 (4) 0.5111 (3) 0.25741 (14) 0.0535 (8)
H15 0.1356 0.4599 0.2694 0.064*
O1 0.3332 (13) 0.9741 (12) 0.4938 (7) 0.206 (4) 0.50
C21 0.3746 (18) 1.0279 (16) 0.4404 (6) 0.205 (5) 0.50
H21B 0.3099 1.0935 0.4290 0.246* 0.50
H21A 0.3621 0.9763 0.4048 0.246* 0.50
C22 0.5356 (19) 1.0621 (16) 0.4569 (7) 0.199 (5) 0.50
H22B 0.5489 1.1392 0.4433 0.239* 0.50
H22A 0.6009 1.0129 0.4367 0.239* 0.50
C23 0.5763 (17) 1.0534 (16) 0.5268 (8) 0.201 (5) 0.50
H23A 0.6671 1.0067 0.5385 0.241* 0.50
H23B 0.5964 1.1277 0.5455 0.241* 0.50
C24 0.443 (2) 1.0019 (16) 0.5477 (6) 0.195 (5) 0.50
H24A 0.4741 0.9342 0.5720 0.234* 0.50
H24B 0.3984 1.0542 0.5744 0.234* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ti1 0.0335 (3) 0.0417 (3) 0.0402 (3) 0.0018 (2) 0.0084 (2) −0.0042 (2)
Cl1 0.0673 (6) 0.0486 (5) 0.0696 (6) −0.0078 (4) 0.0033 (4) 0.0064 (4)
Cl2 0.0459 (5) 0.0750 (6) 0.0929 (7) 0.0117 (4) 0.0209 (4) −0.0205 (5)
Cl3 0.0591 (5) 0.0518 (5) 0.0609 (5) −0.0144 (4) 0.0157 (4) −0.0023 (4)
Si1 0.0444 (5) 0.0776 (6) 0.0435 (5) 0.0092 (5) 0.0156 (4) −0.0045 (4)
N1 0.0353 (13) 0.0528 (14) 0.0313 (12) 0.0003 (11) 0.0075 (10) 0.0005 (10)
N2 0.0299 (12) 0.0521 (14) 0.0358 (12) 0.0034 (11) 0.0065 (10) −0.0004 (10)
C1 0.0330 (15) 0.0366 (14) 0.0373 (15) 0.0003 (11) 0.0092 (11) 0.0052 (11)
C2 0.0371 (17) 0.072 (2) 0.0363 (16) 0.0007 (15) 0.0012 (13) −0.0022 (15)
C3 0.0305 (16) 0.074 (2) 0.0390 (16) 0.0047 (15) −0.0018 (13) 0.0020 (15)
C4 0.0325 (15) 0.0500 (17) 0.0373 (15) −0.0022 (13) 0.0041 (12) 0.0015 (13)
C5 0.0356 (16) 0.0548 (18) 0.0367 (15) 0.0058 (13) 0.0061 (12) 0.0057 (13)
C6 0.0438 (18) 0.105 (3) 0.0392 (17) 0.0132 (19) −0.0028 (14) 0.0103 (17)
C7 0.066 (2) 0.0485 (18) 0.059 (2) 0.0106 (16) 0.0195 (17) 0.0141 (15)
C8 0.054 (2) 0.104 (3) 0.098 (3) 0.003 (2) 0.033 (2) 0.024 (2)
C9 0.070 (2) 0.064 (2) 0.086 (3) 0.0130 (19) 0.016 (2) −0.011 (2)
C10 0.094 (3) 0.174 (5) 0.052 (2) 0.028 (3) 0.019 (2) −0.029 (3)
C11 0.0385 (16) 0.0572 (18) 0.0300 (14) 0.0030 (14) 0.0013 (12) 0.0018 (13)
C12 0.054 (2) 0.069 (2) 0.0370 (16) 0.0061 (17) 0.0123 (14) 0.0125 (15)
C13 0.062 (2) 0.112 (3) 0.0396 (18) 0.021 (2) 0.0170 (17) −0.002 (2)
C14 0.075 (3) 0.083 (3) 0.049 (2) 0.020 (2) −0.0031 (18) −0.0266 (19)
C15 0.0491 (19) 0.059 (2) 0.0475 (17) 0.0001 (16) −0.0070 (15) −0.0126 (15)
O1 0.195 (6) 0.228 (7) 0.195 (6) 0.011 (6) 0.036 (5) −0.014 (6)
C21 0.199 (7) 0.212 (7) 0.203 (7) −0.002 (6) 0.031 (6) 0.017 (6)
C22 0.203 (7) 0.199 (8) 0.193 (7) −0.014 (6) 0.024 (6) 0.008 (6)
C23 0.206 (7) 0.199 (7) 0.199 (7) −0.014 (6) 0.039 (6) −0.005 (6)
C24 0.188 (7) 0.211 (7) 0.187 (7) −0.007 (6) 0.038 (6) −0.011 (6)

Geometric parameters (Å, °)

Ti1—N2 2.153 (2) C7—H7A 0.9600
Ti1—C14 2.315 (3) C8—H8A 0.9600
Ti1—C13 2.327 (3) C8—H8C 0.9600
Ti1—Cl2 2.3377 (10) C8—H8B 0.9600
Ti1—Cl1 2.3475 (9) C9—H9B 0.9600
Ti1—C15 2.350 (3) C9—H9C 0.9600
Ti1—Cl3 2.3533 (9) C9—H9A 0.9600
Ti1—C12 2.377 (3) C10—H10A 0.9600
Ti1—C11 2.394 (3) C10—H10C 0.9600
Si1—N1 1.804 (2) C10—H10B 0.9600
Si1—C8 1.847 (4) C11—C15 1.394 (4)
Si1—C9 1.847 (4) C11—C12 1.404 (4)
Si1—C10 1.849 (4) C12—C13 1.399 (5)
N1—C1 1.364 (3) C12—H12 0.9300
N1—C2 1.390 (3) C13—C14 1.390 (5)
N2—C1 1.330 (3) C13—H13 0.9300
N2—C3 1.388 (3) C14—C15 1.399 (5)
C1—C4 1.474 (4) C14—H14 0.9300
C2—C3 1.335 (4) C15—H15 0.9300
C2—H2 0.9300 O1—C21 1.410 (6)
C3—H3 0.9300 O1—C24 1.421 (6)
C4—C5 1.535 (4) C21—C22 1.460 (6)
C4—H4B 0.9700 C21—H21B 0.9700
C4—H4A 0.9700 C21—H21A 0.9700
C5—C11 1.522 (4) C22—C23 1.489 (6)
C5—C7 1.534 (4) C22—H22B 0.9700
C5—C6 1.544 (4) C22—H22A 0.9700
C6—H6B 0.9600 C23—C24 1.456 (6)
C6—H6C 0.9600 C23—H23A 0.9700
C6—H6A 0.9600 C23—H23B 0.9700
C7—H7B 0.9600 C24—H24A 0.9700
C7—H7C 0.9600 C24—H24B 0.9700
N2—Ti1—C14 129.38 (12) H7B—C7—H7C 109.5
N2—Ti1—C13 135.04 (11) C5—C7—H7A 109.5
C14—Ti1—C13 34.86 (13) H7B—C7—H7A 109.5
N2—Ti1—Cl2 138.10 (6) H7C—C7—H7A 109.5
C14—Ti1—Cl2 89.41 (10) Si1—C8—H8A 109.5
C13—Ti1—Cl2 85.12 (9) Si1—C8—H8C 109.5
N2—Ti1—Cl1 80.79 (7) H8A—C8—H8C 109.5
C14—Ti1—Cl1 89.07 (11) Si1—C8—H8B 109.5
C13—Ti1—Cl1 123.02 (12) H8A—C8—H8B 109.5
Cl2—Ti1—Cl1 85.38 (4) H8C—C8—H8B 109.5
N2—Ti1—C15 94.48 (10) Si1—C9—H9B 109.5
C14—Ti1—C15 34.89 (12) Si1—C9—H9C 109.5
C13—Ti1—C15 57.74 (14) H9B—C9—H9C 109.5
Cl2—Ti1—C15 122.49 (8) Si1—C9—H9A 109.5
Cl1—Ti1—C15 81.89 (9) H9B—C9—H9A 109.5
N2—Ti1—Cl3 80.82 (7) H9C—C9—H9A 109.5
C14—Ti1—Cl3 129.55 (12) Si1—C10—H10A 109.5
C13—Ti1—Cl3 94.70 (12) Si1—C10—H10C 109.5
Cl2—Ti1—Cl3 85.07 (4) H10A—C10—H10C 109.5
Cl1—Ti1—Cl3 139.98 (4) Si1—C10—H10B 109.5
C15—Ti1—Cl3 134.78 (9) H10A—C10—H10B 109.5
N2—Ti1—C12 101.49 (10) H10C—C10—H10B 109.5
C14—Ti1—C12 57.36 (13) C15—C11—C12 107.1 (3)
C13—Ti1—C12 34.59 (12) C15—C11—C5 125.7 (3)
Cl2—Ti1—C12 114.57 (8) C12—C11—C5 126.9 (3)
Cl1—Ti1—C12 138.74 (9) C15—C11—Ti1 71.21 (16)
C15—Ti1—C12 56.85 (12) C12—C11—Ti1 72.22 (17)
Cl3—Ti1—C12 79.88 (9) C5—C11—Ti1 126.58 (18)
N2—Ti1—C11 79.37 (9) C13—C12—C11 108.5 (3)
C14—Ti1—C11 57.56 (11) C13—C12—Ti1 70.76 (19)
C13—Ti1—C11 57.62 (11) C11—C12—Ti1 73.55 (16)
Cl2—Ti1—C11 142.36 (7) C13—C12—H12 125.7
Cl1—Ti1—C11 109.31 (8) C11—C12—H12 125.7
C15—Ti1—C11 34.16 (10) Ti1—C12—H12 121.6
Cl3—Ti1—C11 101.76 (8) C14—C13—C12 107.7 (3)
C12—Ti1—C11 34.23 (10) C14—C13—Ti1 72.1 (2)
N1—Si1—C8 108.14 (16) C12—C13—Ti1 74.65 (18)
N1—Si1—C9 108.33 (15) C14—C13—H13 126.2
C8—Si1—C9 112.84 (18) C12—C13—H13 126.2
N1—Si1—C10 105.75 (16) Ti1—C13—H13 119.0
C8—Si1—C10 112.3 (2) C13—C14—C15 108.1 (3)
C9—Si1—C10 109.1 (2) C13—C14—Ti1 73.0 (2)
C1—N1—C2 106.0 (2) C15—C14—Ti1 73.94 (17)
C1—N1—Si1 129.77 (19) C13—C14—H14 125.9
C2—N1—Si1 124.11 (19) C15—C14—H14 125.9
C1—N2—C3 106.1 (2) Ti1—C14—H14 118.9
C1—N2—Ti1 135.58 (18) C11—C15—C14 108.6 (3)
C3—N2—Ti1 118.30 (18) C11—C15—Ti1 74.63 (16)
N2—C1—N1 110.8 (2) C14—C15—Ti1 71.16 (19)
N2—C1—C4 124.5 (2) C11—C15—H15 125.7
N1—C1—C4 124.7 (2) C14—C15—H15 125.7
C3—C2—N1 107.7 (2) Ti1—C15—H15 120.2
C3—C2—H2 126.2 C21—O1—C24 109.0 (5)
N1—C2—H2 126.2 O1—C21—C22 107.3 (5)
C2—C3—N2 109.4 (2) O1—C21—H21B 110.3
C2—C3—H3 125.3 C22—C21—H21B 110.3
N2—C3—H3 125.3 O1—C21—H21A 110.3
C1—C4—C5 114.0 (2) C22—C21—H21A 110.3
C1—C4—H4B 108.8 H21B—C21—H21A 108.5
C5—C4—H4B 108.8 C21—C22—C23 106.8 (5)
C1—C4—H4A 108.8 C21—C22—H22B 110.4
C5—C4—H4A 108.8 C23—C22—H22B 110.4
H4B—C4—H4A 107.7 C21—C22—H22A 110.4
C11—C5—C7 110.8 (2) C23—C22—H22A 110.4
C11—C5—C4 110.4 (2) H22B—C22—H22A 108.6
C7—C5—C4 109.7 (2) C24—C23—C22 105.4 (5)
C11—C5—C6 107.6 (2) C24—C23—H23A 110.7
C7—C5—C6 110.3 (3) C22—C23—H23A 110.7
C4—C5—C6 107.9 (2) C24—C23—H23B 110.7
C5—C6—H6B 109.5 C22—C23—H23B 110.7
C5—C6—H6C 109.5 H23A—C23—H23B 108.8
H6B—C6—H6C 109.5 O1—C24—C23 108.8 (5)
C5—C6—H6A 109.5 O1—C24—H24A 109.9
H6B—C6—H6A 109.5 C23—C24—H24A 109.9
H6C—C6—H6A 109.5 O1—C24—H24B 109.9
C5—C7—H7B 109.5 C23—C24—H24B 109.9
C5—C7—H7C 109.5 H24A—C24—H24B 108.3
C8—Si1—N1—C1 68.5 (3) N2—Ti1—C12—C13 −167.7 (2)
C9—Si1—N1—C1 −54.1 (3) C14—Ti1—C12—C13 −38.0 (2)
C10—Si1—N1—C1 −171.0 (3) Cl2—Ti1—C12—C13 34.1 (3)
C8—Si1—N1—C2 −115.4 (3) Cl1—Ti1—C12—C13 −78.6 (3)
C9—Si1—N1—C2 121.9 (3) C15—Ti1—C12—C13 −79.9 (3)
C10—Si1—N1—C2 5.1 (3) Cl3—Ti1—C12—C13 113.9 (2)
C14—Ti1—N2—C1 −14.3 (3) C11—Ti1—C12—C13 −117.0 (3)
C13—Ti1—N2—C1 32.8 (3) N2—Ti1—C12—C11 −50.70 (19)
Cl2—Ti1—N2—C1 −167.8 (2) C14—Ti1—C12—C11 79.0 (2)
Cl1—Ti1—N2—C1 −95.4 (3) C13—Ti1—C12—C11 117.0 (3)
C15—Ti1—N2—C1 −14.4 (3) Cl2—Ti1—C12—C11 151.15 (15)
Cl3—Ti1—N2—C1 120.3 (3) Cl1—Ti1—C12—C11 38.4 (2)
C12—Ti1—N2—C1 42.7 (3) C15—Ti1—C12—C11 37.15 (17)
C11—Ti1—N2—C1 16.4 (3) Cl3—Ti1—C12—C11 −129.07 (18)
C14—Ti1—N2—C3 163.4 (2) C11—C12—C13—C14 0.7 (4)
C13—Ti1—N2—C3 −149.5 (2) Ti1—C12—C13—C14 65.0 (2)
Cl2—Ti1—N2—C3 9.9 (3) C11—C12—C13—Ti1 −64.3 (2)
Cl1—Ti1—N2—C3 82.3 (2) N2—Ti1—C13—C14 −97.7 (3)
C15—Ti1—N2—C3 163.3 (2) Cl2—Ti1—C13—C14 96.0 (2)
Cl3—Ti1—N2—C3 −62.0 (2) Cl1—Ti1—C13—C14 14.7 (3)
C12—Ti1—N2—C3 −139.6 (2) C15—Ti1—C13—C14 −37.7 (2)
C11—Ti1—N2—C3 −165.9 (2) Cl3—Ti1—C13—C14 −179.4 (2)
C3—N2—C1—N1 1.5 (3) C12—Ti1—C13—C14 −114.8 (3)
Ti1—N2—C1—N1 179.43 (18) C11—Ti1—C13—C14 −78.4 (2)
C3—N2—C1—C4 −176.1 (3) N2—Ti1—C13—C12 17.2 (3)
Ti1—N2—C1—C4 1.8 (4) C14—Ti1—C13—C12 114.8 (3)
C2—N1—C1—N2 −2.0 (3) Cl2—Ti1—C13—C12 −149.2 (2)
Si1—N1—C1—N2 174.59 (19) Cl1—Ti1—C13—C12 129.5 (2)
C2—N1—C1—C4 175.6 (3) C15—Ti1—C13—C12 77.1 (2)
Si1—N1—C1—C4 −7.8 (4) Cl3—Ti1—C13—C12 −64.6 (2)
C1—N1—C2—C3 1.7 (3) C11—Ti1—C13—C12 36.4 (2)
Si1—N1—C2—C3 −175.2 (2) C12—C13—C14—C15 −0.6 (4)
N1—C2—C3—N2 −0.8 (4) Ti1—C13—C14—C15 66.2 (2)
C1—N2—C3—C2 −0.4 (3) C12—C13—C14—Ti1 −66.7 (2)
Ti1—N2—C3—C2 −178.8 (2) N2—Ti1—C14—C13 115.0 (2)
N2—C1—C4—C5 −48.5 (4) Cl2—Ti1—C14—C13 −82.3 (2)
N1—C1—C4—C5 134.2 (3) Cl1—Ti1—C14—C13 −167.7 (2)
C1—C4—C5—C11 64.3 (3) C15—Ti1—C14—C13 115.2 (3)
C1—C4—C5—C7 −58.2 (3) Cl3—Ti1—C14—C13 0.8 (3)
C1—C4—C5—C6 −178.4 (2) C12—Ti1—C14—C13 37.7 (2)
C7—C5—C11—C15 171.9 (3) C11—Ti1—C14—C13 78.6 (2)
C4—C5—C11—C15 50.2 (4) N2—Ti1—C14—C15 −0.2 (3)
C6—C5—C11—C15 −67.4 (4) C13—Ti1—C14—C15 −115.2 (3)
C7—C5—C11—C12 −15.0 (4) Cl2—Ti1—C14—C15 162.5 (2)
C4—C5—C11—C12 −136.8 (3) Cl1—Ti1—C14—C15 77.1 (2)
C6—C5—C11—C12 105.7 (3) Cl3—Ti1—C14—C15 −114.4 (2)
C7—C5—C11—Ti1 79.7 (3) C12—Ti1—C14—C15 −77.5 (2)
C4—C5—C11—Ti1 −42.1 (3) C11—Ti1—C14—C15 −36.6 (2)
C6—C5—C11—Ti1 −159.6 (2) C12—C11—C15—C14 0.2 (3)
N2—Ti1—C11—C15 −114.7 (2) C5—C11—C15—C14 174.4 (3)
C14—Ti1—C11—C15 37.4 (2) Ti1—C11—C15—C14 −63.5 (2)
C13—Ti1—C11—C15 79.0 (2) C12—C11—C15—Ti1 63.77 (19)
Cl2—Ti1—C11—C15 69.8 (2) C5—C11—C15—Ti1 −122.1 (3)
Cl1—Ti1—C11—C15 −38.5 (2) C13—C14—C15—C11 0.2 (4)
Cl3—Ti1—C11—C15 167.10 (18) Ti1—C14—C15—C11 65.8 (2)
C12—Ti1—C11—C15 115.8 (3) C13—C14—C15—Ti1 −65.6 (2)
N2—Ti1—C11—C12 129.50 (19) N2—Ti1—C15—C11 63.58 (19)
C14—Ti1—C11—C12 −78.4 (2) C14—Ti1—C15—C11 −116.3 (3)
C13—Ti1—C11—C12 −36.8 (2) C13—Ti1—C15—C11 −78.6 (2)
Cl2—Ti1—C11—C12 −45.9 (2) Cl2—Ti1—C15—C11 −137.18 (15)
Cl1—Ti1—C11—C12 −154.28 (17) Cl1—Ti1—C15—C11 143.60 (18)
C15—Ti1—C11—C12 −115.8 (3) Cl3—Ti1—C15—C11 −17.9 (2)
Cl3—Ti1—C11—C12 51.32 (19) C12—Ti1—C15—C11 −37.23 (17)
N2—Ti1—C11—C5 6.3 (2) N2—Ti1—C15—C14 179.9 (2)
C14—Ti1—C11—C5 158.4 (3) C13—Ti1—C15—C14 37.7 (2)
C13—Ti1—C11—C5 −160.0 (3) Cl2—Ti1—C15—C14 −20.9 (3)
Cl2—Ti1—C11—C5 −169.14 (18) Cl1—Ti1—C15—C14 −100.1 (2)
Cl1—Ti1—C11—C5 82.5 (2) Cl3—Ti1—C15—C14 98.4 (2)
C15—Ti1—C11—C5 121.0 (3) C12—Ti1—C15—C14 79.1 (2)
Cl3—Ti1—C11—C5 −71.9 (2) C11—Ti1—C15—C14 116.3 (3)
C12—Ti1—C11—C5 −123.2 (3) C24—O1—C21—C22 17 (2)
C15—C11—C12—C13 −0.6 (3) O1—C21—C22—C23 −14 (2)
C5—C11—C12—C13 −174.7 (3) C21—C22—C23—C24 6(2)
Ti1—C11—C12—C13 62.5 (2) C21—O1—C24—C23 −13 (2)
C15—C11—C12—Ti1 −63.10 (19) C22—C23—C24—O1 4(2)
C5—C11—C12—Ti1 122.8 (3)

Table 1 Geometrical parameters (Å, °) of the environment of the Ti atom in the title compound compared with those of related structures

(I) (III) (IV) (V) (VI)
Ti1—N2 2.153 (2) 2.163 (2) 2.357 (1) 2.274 (4) 2.261 (2)
Ti1—Cl1 2.3475 (9) 2.3513 (8) 2.3217 (4) 2.322 (2) 2.331 (1)
Ti1—Cl2 2.3377 (10) 2.3486 (8) 2.3729 (5) 2.326 (2) 2.338 (1)
Ti1—Cl3 2.3533 (9) 2.3340 (8) 2.2895 (5) 2.300 (2) 2.307 (1)
Ti1···Cpcent 2.030 (1) 2.036 2.025 2.035 2.047
Ti1···PL1 2.029 (1) 2.034 (1) 2.025 2.034 2.046
Ti1···PL2 0.022 (5) 0.608 0.175 0.215
N2—Ti1···Cpcent 111.2 (1)a 110.20 99.66 101.44 101.64
Cl1—Ti1···Cpcent 109.2 (1)a 110.08 116.37 116.68 113.90
Cl2—Ti1···Cpcent 110.69 (9)a 109.75 107.63 109.28 109.73
Cl3—Ti1···Cpcent 110.58 (9)a 110.93 114.71 113.76 115.56
Cl1—Ti1—N2 80.79 (7) 79.24 (6) 82.57 (2) 78.64 80.32
Cl2—Ti1—N2 138.10 (6) 140.05 (6) 152.70 (3) 149.27 148.63
Cl3—Ti1—N2 80.82 (7) 81.19 (6) 83.45 (2) 80.23 78.94
Cl2—Ti1—Cl1 85.38 (4) 86.06 (3) 85.18 (2) 87.84 87.14
Cl2—Ti1—Cl3 85.07 (4) 86.01 (3) 85.30 (2) 86.95 87.20
Cl3—Ti1—Cl1 139.98 (4) 138.52 (3) 128.55 (2) 128.07 129.12
PL1–PL2 81.0 (1) 78.335 82.491 85.895

Notes: (a) the angle between the Ti1—N2 bond and the normal to PL1; (I) this work; (III) Krut'ko et al. (2006); (IV) Herrmann et al. (1995); (V) Enders et al. (1997); (VI) Enders et al. (1996). PL1 and Cpcent denote the C11–C15 Cp ring r.m.s. plane and centroid, respectively, while PL2 denotes an r.m.s. plane through the non-H atoms of a heterocyclic ring.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2182).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  4. Enders, M., Rudolph, R. & Pritzkow, H. (1996). Chem. Ber.129, 459–463.
  5. Enders, M., Rudolph, R. & Pritzkow, H. (1997). J. Organomet. Chem.549, 251–256.
  6. Herrmann, W. A., Morawietz, M. J. A., Priermeier, T. & Mashima, K. (1995). J. Organomet. Chem.486, 291–295.
  7. Krut’ko, D. P., Borzov, M. V., Liao, L., Nie, W., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2006). Russ. Chem. Bull.55, 1574–1580.
  8. Nie, W., Liao, L., Xu, W., Borzov, M. V., Krut’ko, D. P., Churakov, A. V., Howard, J. A. K. & Lemenovskii, D. A. (2008). J. Organomet. Chem.693, 2355–2368.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wang, X., Nie, W., Ge, F. & Borzov, M. V. (2009). Acta Cryst. C65, m255–m259. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013772/nc2182sup1.cif

e-66-0m546-sup1.cif (28.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013772/nc2182Isup2.hkl

e-66-0m546-Isup2.hkl (189.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES