Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 2;66(Pt 5):o1023. doi: 10.1107/S1600536810011736

4-Nitro­phenyl 1-naphthoate

Uzma Bibi a, Humaira M Siddiqi a,*, Zareen Akhter a, Michael Bolte b
PMCID: PMC2979124  PMID: 21579087

Abstract

In the title compound, C17H11NO4, the dihedral angle between the two benzene rings is 8.66 (3)°. The nitro group is twisted by 4.51 (9)° out of the plane of the aromatic ring to which it is attached. The presence of inter­molecular C—H⋯O contacts in the crystal structure leads to the formation of chains along the c axis.

Related literature

For biological and synthetic background, see: Bezerra-Netto et al. (2006); Bibi et al. (2009); Kumarraja & Pitchumani (2004); Selvakumar et al. (2002); Tafesh & Weiguny (1996).graphic file with name e-66-o1023-scheme1.jpg

Experimental

Crystal data

  • C17H11NO4

  • M r = 293.27

  • Monoclinic, Inline graphic

  • a = 7.2049 (6) Å

  • b = 12.8175 (8) Å

  • c = 14.7838 (14) Å

  • β = 99.006 (7)°

  • V = 1348.44 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.25 × 0.21 × 0.21 mm

Data collection

  • Stoe IPDS-II two-circle diffractometer

  • 10239 measured reflections

  • 2508 independent reflections

  • 1928 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.088

  • S = 0.96

  • 2508 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011736/tk2650sup1.cif

e-66-o1023-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011736/tk2650Isup2.hkl

e-66-o1023-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.95 2.45 3.3728 (18) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the University Research Fund 2008–09, Department of Chemistry, Quaid-I-Azam University, for support. The Institut für Anorganische Chemie, J.-W.-Goethe-Universität Frankfurt, is acknowledged for providing laboratory and analytical facilities.

supplementary crystallographic information

Comment

The ability of non-steroidal anti–inflammatory drugs (NSAID's) to modulate the pain, inflammation and fever make them attractive drugs (Bezerra-Netto et al., 2006). Aromatic esters containing a nitro-substituted phenyl ring form a medicinally important class of NSAID's. These can be used as starting materials for the preparation of several analgesic and anti–inflammatory drugs, and some of them are potential intermediates in natural product syntheses (Selvakumar et al., 2002). Nitro compounds can be reduced to give amines which are important synthons for preparing a large number of technologically important materials (Kumarraja et al., 2004; Tafesh et al., 1996). In continuation of studies on related compounds (Bibi et al., 2009), the title compound is reported herein.

A perspective view of the title compound is shown in Fig. 1. The dihedral angle formed between the two aromatic ring systems is 8.66 (3)°. The nitro group is twisted by only 4.51 (9)° out of the plane of the aromatic ring to which it is attached. The crystal structure is stabilized by C—H···O contacts, Table 1.

Experimental

1-Naphthoic acid (1.5 g, 1 mol) was taken in a 100 ml two neck round bottom flask and warmed on a water bath to 323 K. An excess of dry thionyl chloride was added slowly with stirring. Drops (2-3) of DMF were added and the mixture was refluxed for about 50-60 minutes at 343 K. After the completion of the reaction, excess thionyl chloride was removed by repeated evaporations at reduced pressure. 4-Nitrophenol (1.5 g, 0.0065 mol) was dissolved in dry dichloromethane containing triethyl amine at room temperature. The acid chloride was added drop-wise with constant stirring at room temperature for half an hour. The reaction mixture was heated gently for 30 minutes under anhydrous condition and then the solution was poured with constant stirring into cold water (20 ml ). Excess triethyl amine was destroyed by adding the cold dilute HCl solution. The reaction was monitored by TLC using ethyl acetate:n-hexane (1:1). After the completion of reaction the oily product was allowed to settle down and the supernatant liquid was decanted. The product was stirred well with distilled water and extracted with ethyl acetate (3 x 40 ml). Washing was done with 5% NaHCO3 solution to remove unreacted acid and the extract was dried over anhydrous Na2SO4, filtered, and concentrated on a rotary evaporator. The ester soon solidified and was filtered. The title compound was recrystallized from n-hexane (Yield 36.5 %, m.pt. 385–393 K)

Refinement

H atoms were found in a difference map, but they were refined with fixed individual isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model, with C—H = 0.95 Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H11NO4 F(000) = 608
Mr = 293.27 Dx = 1.445 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8709 reflections
a = 7.2049 (6) Å θ = 3.3–26.0°
b = 12.8175 (8) Å µ = 0.10 mm1
c = 14.7838 (14) Å T = 173 K
β = 99.006 (7)° Block, colourless
V = 1348.44 (19) Å3 0.25 × 0.21 × 0.21 mm
Z = 4

Data collection

Stoe IPDS-II two-circle diffractometer 1928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
graphite θmax = 25.6°, θmin = 3.3°
ω scans h = −8→8
10239 measured reflections k = −15→15
2508 independent reflections l = −13→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0582P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
2508 reflections Δρmax = 0.26 e Å3
200 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0103 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.36959 (17) 0.15975 (9) 0.73346 (9) 0.0357 (3)
O1 0.28241 (13) 0.47946 (6) 0.47417 (6) 0.0264 (2)
O2 0.14518 (13) 0.59160 (7) 0.56191 (7) 0.0303 (2)
O3 0.42873 (18) 0.18063 (9) 0.81407 (8) 0.0526 (3)
O4 0.33027 (18) 0.07066 (8) 0.70625 (9) 0.0519 (3)
C1 0.19783 (17) 0.57191 (9) 0.49057 (9) 0.0239 (3)
C2 0.30357 (17) 0.40273 (9) 0.54233 (9) 0.0239 (3)
C3 0.38432 (18) 0.42424 (10) 0.63163 (10) 0.0275 (3)
H3 0.4249 0.4929 0.6491 0.033*
C4 0.40489 (18) 0.34404 (10) 0.69505 (10) 0.0291 (3)
H4 0.4579 0.3568 0.7570 0.035*
C5 0.34691 (18) 0.24492 (10) 0.66653 (9) 0.0272 (3)
C6 0.27048 (19) 0.22251 (10) 0.57696 (10) 0.0301 (3)
H6 0.2335 0.1534 0.5592 0.036*
C7 0.24893 (19) 0.30293 (10) 0.51368 (10) 0.0280 (3)
H7 0.1975 0.2899 0.4516 0.034*
C11 0.17730 (17) 0.63938 (10) 0.40772 (9) 0.0239 (3)
C12 0.20200 (17) 0.75036 (9) 0.41572 (9) 0.0250 (3)
C13 0.2570 (2) 0.80306 (10) 0.49996 (10) 0.0323 (3)
H13 0.2770 0.7646 0.5556 0.039*
C14 0.2816 (2) 0.90913 (11) 0.50176 (12) 0.0426 (4)
H14 0.3169 0.9436 0.5588 0.051*
C15 0.2553 (2) 0.96756 (11) 0.42033 (13) 0.0460 (4)
H15 0.2738 1.0410 0.4226 0.055*
C16 0.2035 (2) 0.91929 (11) 0.33809 (12) 0.0380 (4)
H16 0.1867 0.9594 0.2834 0.046*
C17 0.17434 (18) 0.80981 (10) 0.33332 (10) 0.0286 (3)
C18 0.12013 (19) 0.75958 (11) 0.24776 (10) 0.0322 (3)
H18 0.0998 0.8000 0.1932 0.039*
C19 0.0969 (2) 0.65407 (11) 0.24282 (10) 0.0334 (3)
H19 0.0601 0.6213 0.1851 0.040*
C20 0.12749 (19) 0.59370 (10) 0.32339 (10) 0.0288 (3)
H20 0.1134 0.5201 0.3193 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0365 (7) 0.0352 (7) 0.0361 (8) 0.0029 (5) 0.0078 (5) 0.0115 (5)
O1 0.0335 (5) 0.0227 (4) 0.0240 (5) 0.0043 (4) 0.0081 (4) 0.0044 (4)
O2 0.0387 (6) 0.0295 (5) 0.0240 (5) 0.0049 (4) 0.0089 (4) 0.0020 (4)
O3 0.0747 (9) 0.0495 (7) 0.0318 (7) 0.0025 (6) 0.0026 (6) 0.0140 (5)
O4 0.0705 (8) 0.0296 (6) 0.0539 (8) −0.0058 (5) 0.0045 (6) 0.0137 (5)
C1 0.0237 (6) 0.0228 (6) 0.0251 (7) −0.0011 (5) 0.0036 (5) −0.0006 (5)
C2 0.0236 (6) 0.0241 (6) 0.0252 (7) 0.0031 (5) 0.0075 (5) 0.0043 (5)
C3 0.0278 (7) 0.0253 (6) 0.0289 (8) −0.0011 (5) 0.0033 (5) 0.0004 (5)
C4 0.0277 (7) 0.0333 (7) 0.0256 (8) 0.0022 (5) 0.0018 (6) 0.0022 (6)
C5 0.0253 (7) 0.0280 (7) 0.0291 (8) 0.0039 (5) 0.0070 (5) 0.0090 (5)
C6 0.0316 (7) 0.0233 (6) 0.0350 (9) 0.0002 (5) 0.0045 (6) 0.0016 (6)
C7 0.0303 (7) 0.0275 (7) 0.0256 (7) 0.0026 (5) 0.0026 (5) −0.0007 (5)
C11 0.0219 (6) 0.0259 (6) 0.0246 (7) 0.0012 (5) 0.0053 (5) 0.0029 (5)
C12 0.0218 (6) 0.0254 (6) 0.0282 (8) 0.0015 (5) 0.0051 (5) 0.0029 (5)
C13 0.0368 (8) 0.0296 (7) 0.0299 (8) −0.0010 (5) 0.0033 (6) 0.0004 (6)
C14 0.0546 (10) 0.0309 (8) 0.0409 (10) −0.0040 (6) 0.0033 (7) −0.0061 (6)
C15 0.0567 (11) 0.0247 (7) 0.0561 (12) −0.0042 (7) 0.0070 (8) 0.0015 (7)
C16 0.0397 (8) 0.0300 (7) 0.0441 (10) 0.0021 (6) 0.0061 (7) 0.0131 (6)
C17 0.0235 (6) 0.0293 (7) 0.0333 (8) 0.0023 (5) 0.0058 (6) 0.0063 (6)
C18 0.0315 (7) 0.0386 (8) 0.0265 (8) 0.0016 (6) 0.0042 (6) 0.0111 (6)
C19 0.0372 (8) 0.0396 (8) 0.0228 (7) −0.0025 (6) 0.0026 (6) 0.0010 (6)
C20 0.0314 (7) 0.0281 (6) 0.0271 (8) −0.0013 (5) 0.0050 (6) 0.0009 (5)

Geometric parameters (Å, °)

N1—O4 1.2290 (16) C11—C12 1.4362 (18)
N1—O3 1.2307 (18) C12—C13 1.418 (2)
N1—C5 1.4651 (17) C12—C17 1.4242 (19)
O1—C1 1.3713 (15) C13—C14 1.371 (2)
O1—C2 1.3993 (15) C13—H13 0.9500
O2—C1 1.2022 (17) C14—C15 1.405 (2)
C1—C11 1.4876 (18) C14—H14 0.9500
C2—C3 1.385 (2) C15—C16 1.363 (2)
C2—C7 1.3850 (18) C15—H15 0.9500
C3—C4 1.3836 (19) C16—C17 1.4191 (19)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.3825 (19) C17—C18 1.419 (2)
C4—H4 0.9500 C18—C19 1.363 (2)
C5—C6 1.382 (2) C18—H18 0.9500
C6—C7 1.3844 (19) C19—C20 1.409 (2)
C6—H6 0.9500 C19—H19 0.9500
C7—H7 0.9500 C20—H20 0.9500
C11—C20 1.373 (2)
O4—N1—O3 123.10 (12) C13—C12—C17 118.61 (12)
O4—N1—C5 118.41 (13) C13—C12—C11 123.94 (12)
O3—N1—C5 118.49 (12) C17—C12—C11 117.43 (12)
C1—O1—C2 118.78 (10) C14—C13—C12 120.47 (14)
O2—C1—O1 123.12 (12) C14—C13—H13 119.8
O2—C1—C11 126.58 (11) C12—C13—H13 119.8
O1—C1—C11 110.27 (11) C13—C14—C15 120.82 (15)
C3—C2—C7 122.17 (12) C13—C14—H14 119.6
C3—C2—O1 121.92 (11) C15—C14—H14 119.6
C7—C2—O1 115.80 (12) C16—C15—C14 120.24 (14)
C4—C3—C2 118.86 (12) C16—C15—H15 119.9
C4—C3—H3 120.6 C14—C15—H15 119.9
C2—C3—H3 120.6 C15—C16—C17 120.72 (14)
C5—C4—C3 118.75 (13) C15—C16—H16 119.6
C5—C4—H4 120.6 C17—C16—H16 119.6
C3—C4—H4 120.6 C18—C17—C16 120.73 (13)
C4—C5—C6 122.62 (12) C18—C17—C12 120.13 (12)
C4—C5—N1 118.84 (13) C16—C17—C12 119.13 (13)
C6—C5—N1 118.53 (12) C19—C18—C17 120.82 (13)
C5—C6—C7 118.57 (12) C19—C18—H18 119.6
C5—C6—H6 120.7 C17—C18—H18 119.6
C7—C6—H6 120.7 C18—C19—C20 119.87 (13)
C6—C7—C2 118.99 (13) C18—C19—H19 120.1
C6—C7—H7 120.5 C20—C19—H19 120.1
C2—C7—H7 120.5 C11—C20—C19 121.17 (12)
C20—C11—C12 120.56 (12) C11—C20—H20 119.4
C20—C11—C1 118.54 (11) C19—C20—H20 119.4
C12—C11—C1 120.86 (12)
C2—O1—C1—O2 2.09 (18) C20—C11—C12—C13 −178.63 (13)
C2—O1—C1—C11 −176.10 (10) C1—C11—C12—C13 3.73 (19)
C1—O1—C2—C3 −51.49 (16) C20—C11—C12—C17 −0.49 (18)
C1—O1—C2—C7 132.16 (12) C1—C11—C12—C17 −178.13 (11)
C7—C2—C3—C4 −2.4 (2) C17—C12—C13—C14 0.4 (2)
O1—C2—C3—C4 −178.48 (12) C11—C12—C13—C14 178.56 (14)
C2—C3—C4—C5 1.1 (2) C12—C13—C14—C15 −0.8 (2)
C3—C4—C5—C6 0.5 (2) C13—C14—C15—C16 0.4 (3)
C3—C4—C5—N1 179.64 (12) C14—C15—C16—C17 0.3 (2)
O4—N1—C5—C4 −174.87 (13) C15—C16—C17—C18 179.92 (14)
O3—N1—C5—C4 4.5 (2) C15—C16—C17—C12 −0.7 (2)
O4—N1—C5—C6 4.29 (19) C13—C12—C17—C18 179.70 (12)
O3—N1—C5—C6 −176.38 (13) C11—C12—C17—C18 1.46 (18)
C4—C5—C6—C7 −0.9 (2) C13—C12—C17—C16 0.31 (19)
N1—C5—C6—C7 179.98 (12) C11—C12—C17—C16 −177.93 (12)
C5—C6—C7—C2 −0.3 (2) C16—C17—C18—C19 178.26 (14)
C3—C2—C7—C6 2.0 (2) C12—C17—C18—C19 −1.1 (2)
O1—C2—C7—C6 178.32 (12) C17—C18—C19—C20 −0.2 (2)
O2—C1—C11—C20 −138.43 (14) C12—C11—C20—C19 −0.8 (2)
O1—C1—C11—C20 39.68 (15) C1—C11—C20—C19 176.85 (12)
O2—C1—C11—C12 39.26 (19) C18—C19—C20—C11 1.2 (2)
O1—C1—C11—C12 −142.63 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18···O2i 0.95 2.45 3.3728 (18) 164

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2650).

References

  1. Bezerra-Netto, H. J. C., Daniel, I. L., Ana, L. P. M., Helio, M. A., Eliezer, J. B. & Carlos, A. M. F. (2006). Bioorg. Med. Chem.14, 7924–7935.
  2. Bibi, U., Siddiqi, H. M., Bolte, M. & Akhter, Z. (2009). Acta Cryst. E65, o3038. [DOI] [PMC free article] [PubMed]
  3. Kumarraja, M. & Pitchumani, K. (2004). J. Appl. Catal. A, 265, 135–139.
  4. Selvakumar, N., Malar Azhagan, A., Seinivas, D. & Gopi Krishna, G. (2002). Tetrahedron Lett.43, 9175–9178.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  7. Tafesh, M. & Weiguny, J. (1996). Chem. Rev.96, 2035–2052. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011736/tk2650sup1.cif

e-66-o1023-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011736/tk2650Isup2.hkl

e-66-o1023-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES