Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1150. doi: 10.1107/S1600536810014418

N-(3,4-Dimethyl­phen­yl)-2,4-dimethyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2979129  PMID: 21579197

Abstract

In the title compound, C16H19NO2S, the dihedral angle between the aromatic rings is 47.2 (2)°. The crystal structure features zigzag C(4) chains linked by N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006). For our study on the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a ,b ); Nirmala et al. (2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-66-o1150-scheme1.jpg

Experimental

Crystal data

  • C16H19NO2S

  • M r = 289.38

  • Monoclinic, Inline graphic

  • a = 9.732 (1) Å

  • b = 15.045 (2) Å

  • c = 10.425 (1) Å

  • β = 100.10 (1)°

  • V = 1502.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.92 mm−1

  • T = 299 K

  • 0.45 × 0.38 × 0.28 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.479, T max = 0.616

  • 2858 measured reflections

  • 2672 independent reflections

  • 2265 reflections with I > 2σ(I)

  • R int = 0.047

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.338

  • S = 1.59

  • 2672 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014418/bt5248sup1.cif

e-66-o1150-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014418/bt5248Isup2.hkl

e-66-o1150-Isup2.hkl (131.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.41 2.976 (4) 124

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010),in the present work, the structure of 2,4-dimethyl-N-(3,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the S═O bonds. The molecule in (I) is bent at the S- atom with the C—SO2—NH—C torsion angle of 57.4 (3)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II), 66.5 (2)° in 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (III) , 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (IV) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N- (phenyl)benzenesulfonamide (V).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 47.2 (2)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 41.0 (1)° in (III), 82.1 (1)° in (IV) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (V),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Experimental

The solution of m-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N- (3,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like yellow single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom. To improve the values of R1, wR2, and GOOF, six reflections (-3 4 7, -3 9 3, 0 9 5, -8 4 3, 3 11 1, -8 4 1) were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C16H19NO2S F(000) = 616
Mr = 289.38 Dx = 1.279 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.732 (1) Å θ = 4.6–22.4°
b = 15.045 (2) Å µ = 1.92 mm1
c = 10.425 (1) Å T = 299 K
β = 100.10 (1)° Prism, yellow
V = 1502.8 (3) Å3 0.45 × 0.38 × 0.28 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2265 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.047
graphite θmax = 67.0°, θmin = 4.6°
ω/2θ scans h = −11→11
Absorption correction: ψ scan (North et al., 1968) k = −17→0
Tmin = 0.479, Tmax = 0.616 l = −12→1
2858 measured reflections 3 standard reflections every 120 min
2672 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.338 H-atom parameters constrained
S = 1.59 w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
2672 reflections (Δ/σ)max = 0.042
185 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.01170 (9) 0.29486 (6) 0.42947 (8) 0.0414 (5)
O1 −0.1509 (3) 0.3027 (2) 0.3594 (3) 0.0581 (9)
O2 0.0109 (3) 0.2694 (2) 0.5633 (3) 0.0539 (9)
N1 0.0626 (3) 0.2187 (2) 0.3527 (3) 0.0420 (8)
H1N 0.0143 0.1909 0.2880 0.050*
C1 0.0835 (4) 0.3947 (2) 0.4209 (4) 0.0407 (9)
C2 0.0551 (4) 0.4535 (3) 0.3159 (4) 0.0462 (10)
C3 0.1420 (5) 0.5271 (3) 0.3193 (5) 0.0551 (11)
H3 0.1251 0.5673 0.2507 0.066*
C4 0.2520 (5) 0.5435 (3) 0.4192 (5) 0.0571 (12)
C5 0.2745 (6) 0.4854 (3) 0.5202 (6) 0.0658 (13)
H5 0.3478 0.4954 0.5889 0.079*
C6 0.1904 (5) 0.4114 (3) 0.5229 (4) 0.0547 (11)
H6 0.2062 0.3729 0.5938 0.066*
C7 0.2084 (4) 0.1981 (2) 0.3928 (4) 0.0406 (9)
C8 0.2517 (4) 0.1470 (3) 0.5026 (4) 0.0460 (10)
H8 0.1860 0.1251 0.5494 0.055*
C9 0.3919 (5) 0.1279 (3) 0.5439 (4) 0.0501 (10)
C10 0.4903 (5) 0.1578 (3) 0.4705 (5) 0.0541 (11)
C11 0.4431 (5) 0.2072 (3) 0.3588 (5) 0.0578 (12)
H11 0.5072 0.2266 0.3084 0.069*
C12 0.3043 (5) 0.2284 (3) 0.3204 (4) 0.0492 (10)
H12 0.2757 0.2628 0.2464 0.059*
C13 −0.0607 (6) 0.4423 (4) 0.2013 (5) 0.0685 (14)
H13A −0.1470 0.4619 0.2245 0.082*
H13B −0.0683 0.3808 0.1767 0.082*
H13C −0.0408 0.4770 0.1295 0.082*
C14 0.3438 (7) 0.6239 (4) 0.4164 (9) 0.094 (2)
H14A 0.2915 0.6702 0.3666 0.113*
H14B 0.4227 0.6084 0.3772 0.113*
H14C 0.3756 0.6444 0.5038 0.113*
C15 0.4395 (6) 0.0747 (3) 0.6666 (5) 0.0719 (15)
H15A 0.4804 0.0199 0.6449 0.086*
H15B 0.3609 0.0622 0.7080 0.086*
H15C 0.5075 0.1083 0.7250 0.086*
C16 0.6417 (6) 0.1387 (4) 0.5107 (7) 0.0804 (18)
H16A 0.6534 0.0807 0.5496 0.096*
H16B 0.6828 0.1825 0.5729 0.096*
H16C 0.6865 0.1406 0.4358 0.096*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0466 (7) 0.0476 (7) 0.0298 (7) −0.0046 (3) 0.0060 (4) 0.0006 (3)
O1 0.0496 (19) 0.065 (2) 0.058 (2) −0.0046 (13) 0.0062 (15) 0.0016 (14)
O2 0.075 (2) 0.0593 (18) 0.0301 (16) −0.0065 (14) 0.0176 (14) 0.0018 (11)
N1 0.0517 (19) 0.0441 (17) 0.0270 (15) −0.0076 (13) −0.0018 (13) −0.0048 (12)
C1 0.046 (2) 0.0384 (19) 0.0377 (19) 0.0013 (14) 0.0077 (15) −0.0023 (14)
C2 0.052 (2) 0.043 (2) 0.043 (2) 0.0089 (16) 0.0090 (17) −0.0022 (16)
C3 0.065 (3) 0.044 (2) 0.060 (3) 0.0053 (19) 0.020 (2) 0.0052 (19)
C4 0.061 (3) 0.042 (2) 0.074 (3) −0.0055 (18) 0.025 (2) −0.017 (2)
C5 0.063 (3) 0.066 (3) 0.064 (3) −0.011 (2) 0.000 (2) −0.019 (2)
C6 0.058 (2) 0.054 (2) 0.047 (2) −0.0079 (19) −0.0055 (18) −0.0016 (19)
C7 0.053 (2) 0.0352 (18) 0.0312 (18) −0.0039 (14) 0.0021 (16) −0.0068 (13)
C8 0.060 (2) 0.041 (2) 0.0369 (19) 0.0011 (16) 0.0080 (17) −0.0016 (15)
C9 0.068 (3) 0.0382 (19) 0.039 (2) 0.0048 (17) −0.0056 (18) −0.0041 (16)
C10 0.060 (3) 0.041 (2) 0.057 (2) −0.0015 (17) −0.0011 (19) −0.0083 (18)
C11 0.061 (3) 0.057 (3) 0.056 (3) 0.0009 (19) 0.012 (2) −0.0007 (19)
C12 0.062 (2) 0.049 (2) 0.036 (2) −0.0008 (18) 0.0076 (18) 0.0022 (17)
C13 0.084 (3) 0.059 (3) 0.053 (3) 0.005 (2) −0.011 (2) 0.015 (2)
C14 0.089 (4) 0.063 (3) 0.138 (6) −0.023 (3) 0.041 (4) −0.026 (4)
C15 0.100 (4) 0.057 (3) 0.050 (3) 0.016 (3) −0.009 (3) 0.009 (2)
C16 0.069 (3) 0.065 (3) 0.098 (4) 0.003 (2) −0.012 (3) −0.006 (3)

Geometric parameters (Å, °)

S1—O2 1.426 (3) C8—H8 0.9300
S1—O1 1.427 (3) C9—C10 1.401 (7)
S1—N1 1.636 (3) C9—C15 1.511 (6)
S1—C1 1.775 (4) C10—C11 1.391 (7)
N1—C7 1.441 (5) C10—C16 1.487 (7)
N1—H1N 0.8600 C11—C12 1.377 (6)
C1—C6 1.374 (5) C11—H11 0.9300
C1—C2 1.397 (6) C12—H12 0.9300
C2—C3 1.389 (6) C13—H13A 0.9600
C2—C13 1.501 (6) C13—H13B 0.9600
C3—C4 1.378 (7) C13—H13C 0.9600
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.357 (8) C14—H14B 0.9600
C4—C14 1.507 (7) C14—H14C 0.9600
C5—C6 1.385 (7) C15—H15A 0.9600
C5—H5 0.9300 C15—H15B 0.9600
C6—H6 0.9300 C15—H15C 0.9600
C7—C12 1.377 (6) C16—H16A 0.9600
C7—C8 1.382 (5) C16—H16B 0.9600
C8—C9 1.387 (6) C16—H16C 0.9600
O2—S1—O1 119.5 (2) C10—C9—C15 119.6 (4)
O2—S1—N1 106.57 (18) C11—C10—C9 118.2 (4)
O1—S1—N1 105.59 (18) C11—C10—C16 120.3 (5)
O2—S1—C1 106.50 (19) C9—C10—C16 121.5 (5)
O1—S1—C1 111.18 (18) C12—C11—C10 122.0 (5)
N1—S1—C1 106.75 (17) C12—C11—H11 119.0
C7—N1—S1 120.4 (2) C10—C11—H11 119.0
C7—N1—H1N 119.8 C11—C12—C7 119.3 (4)
S1—N1—H1N 119.8 C11—C12—H12 120.4
C6—C1—C2 120.6 (4) C7—C12—H12 120.4
C6—C1—S1 116.5 (3) C2—C13—H13A 109.5
C2—C1—S1 122.9 (3) C2—C13—H13B 109.5
C3—C2—C1 116.6 (4) H13A—C13—H13B 109.5
C3—C2—C13 118.6 (4) C2—C13—H13C 109.5
C1—C2—C13 124.7 (4) H13A—C13—H13C 109.5
C4—C3—C2 123.4 (4) H13B—C13—H13C 109.5
C4—C3—H3 118.3 C4—C14—H14A 109.5
C2—C3—H3 118.3 C4—C14—H14B 109.5
C5—C4—C3 118.0 (4) H14A—C14—H14B 109.5
C5—C4—C14 121.1 (5) C4—C14—H14C 109.5
C3—C4—C14 120.9 (5) H14A—C14—H14C 109.5
C4—C5—C6 121.2 (5) H14B—C14—H14C 109.5
C4—C5—H5 119.4 C9—C15—H15A 109.5
C6—C5—H5 119.4 C9—C15—H15B 109.5
C1—C6—C5 120.1 (4) H15A—C15—H15B 109.5
C1—C6—H6 120.0 C9—C15—H15C 109.5
C5—C6—H6 120.0 H15A—C15—H15C 109.5
C12—C7—C8 120.0 (4) H15B—C15—H15C 109.5
C12—C7—N1 119.8 (4) C10—C16—H16A 109.5
C8—C7—N1 120.1 (4) C10—C16—H16B 109.5
C7—C8—C9 120.9 (4) H16A—C16—H16B 109.5
C7—C8—H8 119.6 C10—C16—H16C 109.5
C9—C8—H8 119.6 H16A—C16—H16C 109.5
C8—C9—C10 119.6 (4) H16B—C16—H16C 109.5
C8—C9—C15 120.8 (4)
O2—S1—N1—C7 −56.1 (3) C2—C1—C6—C5 −2.3 (7)
O1—S1—N1—C7 175.8 (3) S1—C1—C6—C5 176.5 (4)
C1—S1—N1—C7 57.4 (3) C4—C5—C6—C1 1.3 (8)
O2—S1—C1—C6 21.0 (4) S1—N1—C7—C12 −104.3 (4)
O1—S1—C1—C6 152.8 (3) S1—N1—C7—C8 76.6 (4)
N1—S1—C1—C6 −92.5 (3) C12—C7—C8—C9 2.1 (6)
O2—S1—C1—C2 −160.2 (3) N1—C7—C8—C9 −178.8 (3)
O1—S1—C1—C2 −28.4 (4) C7—C8—C9—C10 −2.5 (6)
N1—S1—C1—C2 86.2 (3) C7—C8—C9—C15 177.8 (4)
C6—C1—C2—C3 1.6 (6) C8—C9—C10—C11 1.0 (6)
S1—C1—C2—C3 −177.2 (3) C15—C9—C10—C11 −179.4 (4)
C6—C1—C2—C13 −178.8 (5) C8—C9—C10—C16 −179.9 (4)
S1—C1—C2—C13 2.5 (6) C15—C9—C10—C16 −0.2 (7)
C1—C2—C3—C4 0.2 (6) C9—C10—C11—C12 1.1 (7)
C13—C2—C3—C4 −179.5 (5) C16—C10—C11—C12 −178.1 (5)
C2—C3—C4—C5 −1.2 (7) C10—C11—C12—C7 −1.6 (7)
C2—C3—C4—C14 179.2 (4) C8—C7—C12—C11 0.0 (6)
C3—C4—C5—C6 0.5 (8) N1—C7—C12—C11 −179.2 (4)
C14—C4—C5—C6 −180.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.86 2.41 2.976 (4) 124

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5248).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275. [DOI] [PMC free article] [PubMed]
  5. Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017. [DOI] [PMC free article] [PubMed]
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  8. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014418/bt5248sup1.cif

e-66-o1150-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014418/bt5248Isup2.hkl

e-66-o1150-Isup2.hkl (131.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES