Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1235–o1236. doi: 10.1107/S1600536810015254

(E)-N′-(2,4,5-Trimethoxy­benzyl­idene)isonicotinohydrazide dihydrate

H S Naveenkumar a, Amirin Sadikun a,, Pazilah Ibrahim a, Chin Sing Yeap b,§, Hoong-Kun Fun b,*,
PMCID: PMC2979138  PMID: 21579256

Abstract

The asymmetric unit of the title compound, C16H17N3O4·2H2O, contains one Schiff base mol­ecule and two water mol­ecules. The Schiff base mol­ecule exists in an E configuration with respect to the C=N double bond and is essentially planar, the dihedral angle between the benzene and pyridine rings being 5.48 (8)°. The three meth­oxy groups are also coplanar with the benzene ring [C—O—C—C torsion angles = 3.9 (2), 178.51 (15) and 0.8 (2) Å]. In the crystal structure, the water mol­ecules link the mol­ecules into a three-dimensional network via inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a ,b ); Shi (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1235-scheme1.jpg

Experimental

Crystal data

  • C16H17N3O4·2H2O

  • M r = 351.36

  • Monoclinic, Inline graphic

  • a = 6.8156 (4) Å

  • b = 14.5648 (10) Å

  • c = 8.5589 (5) Å

  • β = 103.421 (2)°

  • V = 826.42 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.50 × 0.28 × 0.19 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.947, T max = 0.979

  • 10676 measured reflections

  • 2254 independent reflections

  • 2171 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.126

  • S = 1.17

  • 2254 reflections

  • 233 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015254/kj2145sup1.cif

e-66-o1235-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015254/kj2145Isup2.hkl

e-66-o1235-Isup2.hkl (110.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2W 0.88 (3) 2.05 (3) 2.916 (2) 171 (2)
O2W—H1W2⋯O1W 0.84 1.93 2.748 (2) 167
O2W—H2W2⋯N1i 0.83 2.10 2.887 (2) 158
O1W—H1W1⋯O3ii 0.85 2.18 2.8913 (19) 141
O1W—H1W1⋯O4ii 0.85 2.43 3.204 (2) 152
O1W—H2W1⋯O1iii 0.86 1.99 2.834 (2) 170
C4—H4A⋯O2W 0.93 2.34 3.253 (3) 169
C7—H7A⋯O2W 0.93 2.58 3.375 (2) 143
C14—H14A⋯O4iii 0.96 2.60 3.281 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK and CSY are grateful to USM for USM fellowships. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

supplementary crystallographic information

Comment

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound which was synthesized in our lab.

The asymmetric unit consists of one Schiff base molecule and two water molecules (Fig. 1). The geometry parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b; Shi, 2005). The molecule exists in an E configuration with respect to the C7═N3 double bond. The molecule is essentially coplanar with dihedral angle between the benzene ring and the pyridine ring being 5.48 (8)°. The three methoxy groups are coplanar with the benzene ring [torsion angle, C14–O2–C9–C10 = 3.9 (2), C15–O3–C11–C12 = 178.51 (15), C16–O4–C12–C13 = 0.8 (2) Å]. In the crystal structure, the water molecules link the molecules into a three-dimensional network by the intermolecular N–H···O, O–H···O O–H···N and C–H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

The isoniazid derivative was prepared following the procedure by Lourenco et al., (2008). The title compound was prepared by reaction between 2, 4, 5-trimethoxybenzaldehyde (1.0 eq) and isoniazid (1.0 eq) in ethanol/water. After stirring for 1-3 hours at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and ethyl ether, afforded the pure derivative. The yellow single crystal suitable for X-ray analysis was obtained by recrystalization with methanol.

Refinement

N-bound and O-bound hydrogen atoms were located from the difference Fourier map. The N-bound hydrogen atom was refined freely and the O-bound hydrogen atoms were constrained to ride on the parent atom with Uiso(H) = 1.5 Ueq(O). The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). Rotating-group models were applied for the methyl groups. As there is not enough anomalous dispersion to determine the absolute configuration, 4136 Friedel pairs were merged before final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C16H17N3O4·2H2O F(000) = 372
Mr = 351.36 Dx = 1.412 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 6099 reflections
a = 6.8156 (4) Å θ = 3.1–37.4°
b = 14.5648 (10) Å µ = 0.11 mm1
c = 8.5589 (5) Å T = 100 K
β = 103.421 (2)° Block, yellow
V = 826.42 (9) Å3 0.50 × 0.28 × 0.19 mm
Z = 2

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 2254 independent reflections
Radiation source: fine-focus sealed tube 2171 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 29.0°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.947, Tmax = 0.979 k = −19→19
10676 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.098P)2] where P = (Fo2 + 2Fc2)/3
2254 reflections (Δ/σ)max < 0.001
233 parameters Δρmax = 0.57 e Å3
1 restraint Δρmin = −0.56 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7986 (2) 0.81175 (12) 1.11648 (15) 0.0180 (3)
O2 0.6823 (2) 1.23398 (11) 0.79017 (15) 0.0156 (3)
O3 0.8195 (2) 1.38828 (11) 1.30523 (16) 0.0189 (3)
O4 0.89952 (19) 1.23697 (11) 1.45332 (14) 0.0162 (3)
N1 0.6308 (2) 0.59240 (13) 0.6538 (2) 0.0172 (3)
N2 0.7323 (2) 0.91163 (13) 0.90629 (17) 0.0130 (3)
N3 0.7635 (2) 0.98623 (13) 1.00977 (19) 0.0138 (3)
C1 0.7218 (3) 0.65940 (15) 0.9179 (2) 0.0171 (4)
H1A 0.7568 0.6505 1.0285 0.020*
C2 0.6821 (3) 0.58454 (16) 0.8141 (2) 0.0206 (4)
H2A 0.6917 0.5260 0.8584 0.025*
C3 0.6190 (3) 0.67728 (16) 0.5943 (2) 0.0170 (4)
H3A 0.5837 0.6841 0.4833 0.020*
C4 0.6562 (3) 0.75638 (15) 0.6879 (2) 0.0165 (4)
H4A 0.6463 0.8141 0.6403 0.020*
C5 0.7087 (2) 0.74703 (14) 0.8545 (2) 0.0118 (4)
C6 0.7510 (2) 0.82624 (14) 0.9712 (2) 0.0126 (4)
C7 0.7415 (2) 1.06540 (15) 0.9400 (2) 0.0127 (3)
H7A 0.7100 1.0685 0.8285 0.015*
C8 0.7652 (2) 1.14993 (14) 1.0336 (2) 0.0117 (3)
C9 0.7321 (2) 1.23481 (15) 0.9547 (2) 0.0122 (4)
C10 0.7488 (3) 1.31661 (14) 1.0429 (2) 0.0131 (4)
H10A 0.7242 1.3727 0.9902 0.016*
C11 0.8021 (2) 1.31332 (14) 1.2090 (2) 0.0130 (4)
C12 0.8412 (2) 1.22870 (15) 1.2901 (2) 0.0128 (4)
C13 0.8203 (2) 1.14806 (14) 1.2032 (2) 0.0116 (3)
H13A 0.8428 1.0921 1.2566 0.014*
C14 0.6607 (3) 1.32161 (15) 0.7124 (2) 0.0168 (4)
H14A 0.6469 1.3133 0.5991 0.025*
H14B 0.7777 1.3584 0.7552 0.025*
H14C 0.5430 1.3519 0.7308 0.025*
C15 0.7866 (3) 1.47619 (16) 1.2305 (2) 0.0184 (4)
H15A 0.7906 1.5225 1.3110 0.028*
H15B 0.6571 1.4771 1.1563 0.028*
H15C 0.8900 1.4882 1.1738 0.028*
C16 0.9457 (3) 1.15432 (15) 1.5425 (2) 0.0176 (4)
H16A 1.0034 1.1687 1.6531 0.026*
H16B 1.0403 1.1191 1.4999 0.026*
H16C 0.8244 1.1193 1.5348 0.026*
H1N2 0.692 (4) 0.923 (2) 0.803 (3) 0.017 (6)*
O2W 0.6218 (2) 0.96947 (12) 0.57107 (16) 0.0189 (3)
H1W2 0.7145 0.9636 0.5228 0.028*
H2W2 0.5246 0.9958 0.5113 0.028*
O1W 0.8961 (2) 0.92446 (13) 0.39361 (16) 0.0228 (3)
H1W1 0.9693 0.8884 0.4600 0.034*
H2W1 0.8554 0.8950 0.3055 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0273 (7) 0.0138 (8) 0.0110 (6) 0.0009 (5) 0.0009 (5) 0.0001 (5)
O2 0.0256 (6) 0.0115 (7) 0.0088 (6) −0.0002 (5) 0.0017 (4) 0.0008 (5)
O3 0.0313 (7) 0.0101 (7) 0.0128 (6) 0.0004 (6) 0.0003 (5) −0.0028 (5)
O4 0.0261 (6) 0.0122 (7) 0.0085 (5) 0.0014 (5) 0.0004 (4) 0.0006 (5)
N1 0.0194 (6) 0.0137 (9) 0.0176 (8) −0.0008 (6) 0.0025 (5) −0.0044 (6)
N2 0.0178 (6) 0.0097 (8) 0.0105 (6) −0.0013 (6) 0.0016 (5) −0.0023 (6)
N3 0.0161 (6) 0.0103 (8) 0.0143 (6) −0.0011 (6) 0.0020 (5) −0.0030 (6)
C1 0.0249 (8) 0.0123 (10) 0.0136 (8) −0.0001 (7) 0.0035 (6) 0.0005 (7)
C2 0.0328 (9) 0.0099 (10) 0.0185 (9) −0.0008 (8) 0.0045 (7) −0.0008 (8)
C3 0.0202 (7) 0.0144 (10) 0.0148 (8) 0.0010 (7) 0.0010 (6) −0.0023 (7)
C4 0.0214 (8) 0.0126 (10) 0.0139 (8) 0.0016 (7) 0.0008 (6) 0.0002 (7)
C5 0.0122 (6) 0.0100 (10) 0.0128 (7) −0.0002 (6) 0.0025 (5) −0.0016 (7)
C6 0.0132 (7) 0.0126 (10) 0.0115 (7) −0.0002 (6) 0.0018 (5) −0.0008 (6)
C7 0.0137 (6) 0.0121 (9) 0.0119 (7) −0.0008 (6) 0.0024 (5) −0.0031 (7)
C8 0.0138 (7) 0.0094 (9) 0.0118 (8) −0.0003 (6) 0.0025 (5) −0.0013 (6)
C9 0.0136 (7) 0.0125 (9) 0.0100 (7) −0.0007 (7) 0.0017 (5) −0.0017 (7)
C10 0.0169 (7) 0.0090 (9) 0.0129 (7) −0.0001 (7) 0.0024 (6) −0.0007 (7)
C11 0.0153 (7) 0.0098 (10) 0.0133 (8) −0.0003 (7) 0.0020 (6) −0.0026 (7)
C12 0.0145 (6) 0.0136 (10) 0.0095 (7) 0.0005 (7) 0.0010 (5) −0.0003 (7)
C13 0.0126 (6) 0.0098 (9) 0.0121 (7) −0.0006 (6) 0.0020 (5) 0.0006 (6)
C14 0.0252 (8) 0.0124 (10) 0.0123 (7) 0.0002 (7) 0.0034 (6) 0.0018 (7)
C15 0.0255 (8) 0.0096 (9) 0.0185 (8) 0.0006 (7) 0.0016 (6) −0.0027 (7)
C16 0.0244 (8) 0.0154 (10) 0.0129 (7) 0.0018 (7) 0.0042 (6) 0.0042 (7)
O2W 0.0265 (6) 0.0172 (8) 0.0127 (6) 0.0040 (6) 0.0039 (5) 0.0029 (6)
O1W 0.0282 (7) 0.0261 (9) 0.0118 (6) 0.0080 (6) 0.0002 (5) −0.0026 (6)

Geometric parameters (Å, °)

O1—C6 1.228 (2) C7—H7A 0.9300
O2—C9 1.3700 (19) C8—C9 1.402 (3)
O2—C14 1.431 (2) C8—C13 1.412 (2)
O3—C11 1.356 (2) C9—C10 1.401 (3)
O3—C15 1.426 (3) C10—C11 1.384 (2)
O4—C12 1.366 (2) C10—H10A 0.9300
O4—C16 1.421 (2) C11—C12 1.410 (3)
N1—C3 1.332 (3) C12—C13 1.380 (3)
N1—C2 1.340 (3) C13—H13A 0.9300
N2—C6 1.356 (3) C14—H14A 0.9600
N2—N3 1.387 (2) C14—H14B 0.9600
N2—H1N2 0.88 (3) C14—H14C 0.9600
N3—C7 1.291 (3) C15—H15A 0.9600
C1—C5 1.381 (3) C15—H15B 0.9600
C1—C2 1.393 (3) C15—H15C 0.9600
C1—H1A 0.9300 C16—H16A 0.9600
C2—H2A 0.9300 C16—H16B 0.9600
C3—C4 1.392 (3) C16—H16C 0.9600
C3—H3A 0.9300 O2W—H1W2 0.8358
C4—C5 1.394 (2) O2W—H2W2 0.8306
C4—H4A 0.9300 O1W—H1W1 0.8468
C5—C6 1.509 (3) O1W—H2W1 0.8562
C7—C8 1.457 (3)
C9—O2—C14 116.38 (15) C10—C9—C8 120.44 (15)
C11—O3—C15 117.89 (14) C11—C10—C9 119.55 (17)
C12—O4—C16 116.76 (16) C11—C10—H10A 120.2
C3—N1—C2 116.66 (17) C9—C10—H10A 120.2
C6—N2—N3 118.09 (14) O3—C11—C10 124.14 (17)
C6—N2—H1N2 124 (2) O3—C11—C12 115.12 (15)
N3—N2—H1N2 117 (2) C10—C11—C12 120.74 (17)
C7—N3—N2 114.86 (15) O4—C12—C13 126.55 (18)
C5—C1—C2 119.19 (17) O4—C12—C11 113.82 (17)
C5—C1—H1A 120.4 C13—C12—C11 119.64 (15)
C2—C1—H1A 120.4 C12—C13—C8 120.47 (17)
N1—C2—C1 123.5 (2) C12—C13—H13A 119.8
N1—C2—H2A 118.2 C8—C13—H13A 119.8
C1—C2—H2A 118.2 O2—C14—H14A 109.5
N1—C3—C4 124.15 (17) O2—C14—H14B 109.5
N1—C3—H3A 117.9 H14A—C14—H14B 109.5
C4—C3—H3A 117.9 O2—C14—H14C 109.5
C3—C4—C5 118.48 (18) H14A—C14—H14C 109.5
C3—C4—H4A 120.8 H14B—C14—H14C 109.5
C5—C4—H4A 120.8 O3—C15—H15A 109.5
C1—C5—C4 118.01 (17) O3—C15—H15B 109.5
C1—C5—C6 117.48 (15) H15A—C15—H15B 109.5
C4—C5—C6 124.52 (18) O3—C15—H15C 109.5
O1—C6—N2 123.39 (17) H15A—C15—H15C 109.5
O1—C6—C5 120.23 (18) H15B—C15—H15C 109.5
N2—C6—C5 116.38 (15) O4—C16—H16A 109.5
N3—C7—C8 120.95 (15) O4—C16—H16B 109.5
N3—C7—H7A 119.5 H16A—C16—H16B 109.5
C8—C7—H7A 119.5 O4—C16—H16C 109.5
C9—C8—C13 119.13 (16) H16A—C16—H16C 109.5
C9—C8—C7 119.69 (15) H16B—C16—H16C 109.5
C13—C8—C7 121.18 (17) H1W2—O2W—H2W2 109.2
O2—C9—C10 122.09 (17) H1W1—O1W—H2W1 107.4
O2—C9—C8 117.47 (16)
C6—N2—N3—C7 −179.38 (14) C13—C8—C9—O2 178.90 (14)
C3—N1—C2—C1 0.2 (3) C7—C8—C9—O2 −1.3 (2)
C5—C1—C2—N1 −0.1 (3) C13—C8—C9—C10 −1.5 (2)
C2—N1—C3—C4 −0.1 (3) C7—C8—C9—C10 178.21 (15)
N1—C3—C4—C5 −0.2 (3) O2—C9—C10—C11 −179.21 (14)
C2—C1—C5—C4 −0.1 (3) C8—C9—C10—C11 1.3 (2)
C2—C1—C5—C6 179.42 (16) C15—O3—C11—C10 −1.9 (2)
C3—C4—C5—C1 0.3 (3) C15—O3—C11—C12 178.51 (15)
C3—C4—C5—C6 −179.27 (16) C9—C10—C11—O3 −179.05 (15)
N3—N2—C6—O1 −1.7 (2) C9—C10—C11—C12 0.5 (2)
N3—N2—C6—C5 177.93 (14) C16—O4—C12—C13 0.8 (2)
C1—C5—C6—O1 1.3 (2) C16—O4—C12—C11 −178.67 (14)
C4—C5—C6—O1 −179.19 (16) O3—C11—C12—O4 −2.9 (2)
C1—C5—C6—N2 −178.42 (15) C10—C11—C12—O4 177.57 (14)
C4—C5—C6—N2 1.1 (2) O3—C11—C12—C13 177.65 (15)
N2—N3—C7—C8 178.65 (14) C10—C11—C12—C13 −1.9 (2)
N3—C7—C8—C9 −177.35 (15) O4—C12—C13—C8 −177.80 (15)
N3—C7—C8—C13 2.4 (2) C11—C12—C13—C8 1.6 (2)
C14—O2—C9—C10 3.9 (2) C9—C8—C13—C12 0.1 (2)
C14—O2—C9—C8 −176.53 (14) C7—C8—C13—C12 −179.66 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O2W 0.88 (3) 2.05 (3) 2.916 (2) 171 (2)
O2W—H1W2···O1W 0.84 1.93 2.748 (2) 167
O2W—H2W2···N1i 0.83 2.10 2.887 (2) 158
O1W—H1W1···O3ii 0.85 2.18 2.8913 (19) 141
O1W—H1W1···O4ii 0.85 2.43 3.204 (2) 152
O1W—H2W1···O1iii 0.86 1.99 2.834 (2) 170
C4—H4A···O2W 0.93 2.34 3.253 (3) 169
C7—H7A···O2W 0.93 2.58 3.375 (2) 143
C14—H14A···O4iii 0.96 2.60 3.281 (2) 128

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y−1/2, −z+2; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2145).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  3. Janin, Y. L. (2007). Bioorg. Med. Chem.15, 2479–2513. [DOI] [PubMed]
  4. Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  5. Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem.43, 1344–1347. [DOI] [PubMed]
  6. Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett.15, 2509–2513. [DOI] [PubMed]
  7. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541. [DOI] [PMC free article] [PubMed]
  8. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o291. [DOI] [PMC free article] [PubMed]
  9. Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o579. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shi, J. (2005). Acta Cryst. E61, o3933–o3934.
  12. Slayden, R. A. & Barry, C. E. (2000). Microbes Infect.2, 659–669. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015254/kj2145sup1.cif

e-66-o1235-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015254/kj2145Isup2.hkl

e-66-o1235-Isup2.hkl (110.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES