Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6704–6708. doi: 10.1073/pnas.86.17.6704

Trans-inactivation of the Drosophila brown gene: evidence for transcriptional repression and somatic pairing dependence.

S Henikoff 1, T D Dreesen 1
PMCID: PMC297914  PMID: 2505257

Abstract

Position-effect variegation in Drosophila is the variable inactivation of a gene that occurs when it is juxtaposed to heterochromatic regions of chromosomes. The brown gene, required for pteridine pigment in the eye, is unusual in that expression of the unrearranged homolog also is affected. This dominant effect can be very strong, as inactivation is detectable when as many as three trans copies of the gene are present. We show that pteridine reductions coincide with similar reductions in the accumulation of brown mRNA. The dominant effect is suppressed by certain altered structural configurations of the brown region, suggesting that somatic pairing is involved in the phenomenon. We propose that direct transmission of the altered chromatin structure characteristic of position-effect variegation (heterochromatinization) occurs between paired homologs in the region of the brown locus.

Full text

PDF
6704

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahn E. Position-effect variegation for an isoamylase in Drosophila melanogaster. Hereditas. 1972;67(1):79–82. doi: 10.1111/j.1601-5223.1971.tb02361.x. [DOI] [PubMed] [Google Scholar]
  2. Biggin M. D., Bickel S., Benson M., Pirrotta V., Tjian R. Zeste encodes a sequence-specific transcription factor that activates the Ultrabithorax promoter in vitro. Cell. 1988 Jun 3;53(5):713–722. doi: 10.1016/0092-8674(88)90089-x. [DOI] [PubMed] [Google Scholar]
  3. Dreesen T. D., Johnson D. H., Henikoff S. The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes. Mol Cell Biol. 1988 Dec;8(12):5206–5215. doi: 10.1128/mcb.8.12.5206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ephrussi B., Sutton E. A Reconsideration of the Mechanism of Position Effect. Proc Natl Acad Sci U S A. 1944 Aug 15;30(8):183–197. doi: 10.1073/pnas.30.8.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frankham R. Molecular hypotheses for position-effect variegation: anti-sense transcription and promoter occlusion. J Theor Biol. 1988 Nov 8;135(1):85–107. doi: 10.1016/s0022-5193(88)80176-0. [DOI] [PubMed] [Google Scholar]
  6. Henikoff S., Keene M. A., Sloan J. S., Bleskan J., Hards R., Patterson D. Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila. Proc Natl Acad Sci U S A. 1986 Feb;83(3):720–724. doi: 10.1073/pnas.83.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henikoff S. Position Effects and Variegation Enhancers in an Autosomal Region of DROSOPHILA MELANOGASTER. Genetics. 1979 Sep;93(1):105–115. doi: 10.1093/genetics/93.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henikoff S. Position-effect variegation and chromosome structure of a heat shock puff in Drosophila. Chromosoma. 1981;83(3):381–393. doi: 10.1007/BF00327360. [DOI] [PubMed] [Google Scholar]
  9. Judd B. H. Transvection: allelic cross talk. Cell. 1988 Jun 17;53(6):841–843. doi: 10.1016/s0092-8674(88)90209-7. [DOI] [PubMed] [Google Scholar]
  10. Lifschytz E., Hareven D. Heterochromatin markers: arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster. Chromosoma. 1982;86(4):443–455. doi: 10.1007/BF00330120. [DOI] [PubMed] [Google Scholar]
  11. Locke J., Kotarski M. A., Tartof K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 1988 Sep;120(1):181–198. doi: 10.1093/genetics/120.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rushlow C. A., Bender W., Chovnick A. Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics. 1984 Nov;108(3):603–615. doi: 10.1093/genetics/108.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Slatis H M. A Reconsideration of the Brown-Dominant Position Effect. Genetics. 1955 Mar;40(2):246–251. doi: 10.1093/genetics/40.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slatis H M. Position Effects at the Brown Locus in Drosophila Melanogaster. Genetics. 1955 Jan;40(1):5–23. doi: 10.1093/genetics/40.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smolik-Utlaut S. M., Gelbart W. M. The effects of chromosomal rearrangements on the zeste-white interaction in Drosophila melanogaster. Genetics. 1987 Jun;116(2):285–298. doi: 10.1093/genetics/116.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stern C, Kodani M. Studies on the Position Effect at the Cubitus Interruptus Locus of Drosophila Melanogaster. Genetics. 1955 May;40(3):343–373. doi: 10.1093/genetics/40.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sullivan D. T., Sullivan M. C. Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster. Biochem Genet. 1975 Oct;13(9-10):603–613. doi: 10.1007/BF00484918. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES