Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):i37–i38. doi: 10.1107/S160053681001305X

Nonapotassium trialuminium hexa­phosphate

Zuoliang Liu a,, Guochun Zhang a,*, Jianxiu Zhang a, Peizhen Fu a, Yicheng Wu a
PMCID: PMC2979140  PMID: 21578985

Abstract

In the title compound, K9Al3(PO4)6, the anionic substructure is built of inter­linked [PO4] and [AlO4] tetra­hedra. Each O atom of the [AlO4] tetra­hedron is common to a positionally different [PO4] tetra­hedron; thus, each [AlO4] tetra­hedron is surrounded by four positionally different [PO4] tetra­hedra. On the other hand, each [PO4] tetra­hedron shares its two O atoms with two positionally different [AlO4] tetra­hedra; the other two phosphate O atoms are terminal ones coordinated by K atoms. The terminal O atoms are usually closer to the K atoms than the bridging O atoms between the [AlO4] and [PO4] tetra­hedra. There are nine symmetry-independent K atoms in the structure. The coordination numbers of the K atoms are 6 or 7 or 8 up to a distance of 3.31 Å. There are channels in the anionic substructure oriented along the [10Inline graphic] direction that are filled by K atoms.

Related literature

For applications of metal phosphates, see: Barone & Nancollas (1978); Dickinson et al. (1996). For non-centrosymmetric phosphates with non-linear optical properties, see: Noor & Dam (1986); Aguilo & Wuensdregt (1985); Masse & Grenier (1971). For the non-centrosymmetric structures of A 3Al2(PO4)3 (A = K, Rb and Tl), which have three-dimensional [Al2P3O12]3− frameworks, see: Nandini Devi & Vidyasagar (2000). For the structure of KAlP2O7, see: Ng & Calvo (1973);

Experimental

Crystal data

  • K9Al3(PO4)6

  • M r = 1002.66

  • Monoclinic, Inline graphic

  • a = 20.289 (4) Å

  • b = 9.835 (2) Å

  • c = 13.521 (3) Å

  • β = 100.56 (3)°

  • V = 2652.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 113 K

  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005) T min = 0.622, T max = 0.713

  • 35263 measured reflections

  • 11751 independent reflections

  • 10169 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.059

  • S = 1.10

  • 11751 reflections

  • 380 parameters

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001305X/fb2181sup1.cif

e-66-00i37-sup1.cif (130.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001305X/fb2181Isup2.hkl

e-66-00i37-Isup2.hkl (574.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given.

Atom K Coordination number K—O distances
K1 8 2.6202 (10)–3.2026 (12)
K2 7 2.5994 (9)–2.9721 (10)
K3 6 2.6337 (11)–2.9790 (11)
K4 6 2.7005 (10)–3.0451 (10)
K5 8 2.6787 (9)–3.3087 (12)
K6 7 2.6690 (10)–3.0404 (9)
K7 7 2.6369 (9)–3.0973 (10)
K8 7 2.5736 (9)–3.0747 (10)
K9 7 2.6965 (9)–3.3094 (11)

Table 2. Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging O atoms (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8).

Atom K K—Oterminal / K—Obridge distances
K1 2.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16)
K2 2.5994 (12)–2.9722 (14) / 2.8588 (14)
K3 2.6337 (13)–2.9790 (14) / 2.8348 (13)
K4 2.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13)
K5 2.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15)
K6 2.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13)
K7 2.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13)
K8 2.5737 (12)–3.0747 (13) / 2.9491 (13)
K9 2.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16)

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China under grant No. 50672104.

supplementary crystallographic information

Comment

Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.

Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.

In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.

There are channels in the anionic substructure along [1 0 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).

Experimental

Single crystals of K9Al3(PO4)6 have been obtained by the high temperature solution method in a electric resistance furnace. Starting materials of the analytical grade KH2PO4 (136.15 g) and K2CO3 (69.03 g), high purity Al2O3 (51.08 g) and KF (58.33 g), in the respective molar ratio 2:1:1:2, were mixed and melt in a platinum crucible with a diameter of 60 mm and a height of 60 mm at 1273 K. The solution was stirred with a platinum plate for 24 hours. After the solution had been cooled to 1123 K at a rate of 10 Kh-1, a platinum wire attached to an alumina shaft was slowly dipped into the solution, which was then followed by a slow cooling at the rate of 0.5 Kh-1. Thus, a few colourless, transparent plate K9Al3(PO4)6 crystals with typical size of 3 × 3 × 0.5 mm crystallized on the platinum wire. After one week, the crystals were drawn out from the solution at 1050 K and cooled down to room temperature at the rate of 10 Kh-1.

Refinement

All the atomic have been refined anisotropically. The maximal (0.542 eÅ-3) and minimal (-0.519 eÅ-3) electron density peaks are situated 0.67 Å from O16 and 0.56 Å from P4, respectively.

Figures

Fig. 1.

Fig. 1.

Unit cell of K9Al3(PO4)6. The displacement ellipsoids are drawn at the 90% probability level.

Fig. 2.

Fig. 2.

Anionic framework of K9Al3(PO4)6, viewed along [1 0 1].

Fig. 3.

Fig. 3.

Anionic framework of K9Al3(PO4)6 filled with K atoms, viewed along [101].

Crystal data

K9Al3(PO4)6 F(000) = 1968
Mr = 1002.66 Dx = 2.511 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11243 reflections
a = 20.289 (4) Å θ = 1.5–36.1°
b = 9.835 (2) Å µ = 2.02 mm1
c = 13.521 (3) Å T = 113 K
β = 100.56 (3)° Block, colorless
V = 2652.2 (9) Å3 0.26 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART 1000 diffractometer 11751 independent reflections
Radiation source: rotating anode 10169 reflections with I > 2σ(I)
confocal Rint = 0.028
Detector resolution: 7.31 pixels mm-1 θmax = 36.4°, θmin = 2.0°
ω and φ scans h = −32→32
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005) k = −15→14
Tmin = 0.622, Tmax = 0.713 l = −21→21
35263 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2004P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059 (Δ/σ)max = 0.002
S = 1.10 Δρmax = 0.54 e Å3
11751 reflections Δρmin = −0.52 e Å3
380 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0094 (3)
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.298252 (13) 0.34947 (3) 0.33480 (2) 0.00581 (5)
P2 0.533853 (13) 0.58644 (3) 0.36009 (2) 0.00594 (5)
P3 0.187195 (13) 0.57954 (3) 0.69175 (2) 0.00569 (5)
P4 −0.043493 (13) 0.14690 (3) 0.10689 (2) 0.00566 (5)
P5 0.356473 (13) 0.65268 (3) 0.99111 (2) 0.00556 (5)
P6 0.134551 (13) 0.14154 (3) 0.50989 (2) 0.00546 (5)
Al1 0.089399 (16) 0.07540 (3) 0.02839 (2) 0.00532 (6)
Al2 0.248584 (16) 0.06371 (3) 0.38928 (2) 0.00494 (6)
Al3 0.404521 (16) 0.56335 (3) 0.44487 (2) 0.00506 (6)
O1 0.30136 (4) 0.20134 (8) 0.37989 (6) 0.01040 (14)
O2 0.30827 (5) 0.34641 (8) 0.22768 (6) 0.01385 (16)
O3 0.23519 (4) 0.41939 (8) 0.35084 (7) 0.01469 (16)
O4 0.36066 (5) 0.41798 (8) 0.40128 (7) 0.01553 (18)
O5 0.57090 (4) 0.71131 (8) 0.40329 (6) 0.01132 (15)
O6 0.54290 (4) 0.54825 (8) 0.25534 (6) 0.00961 (14)
O7 0.45662 (4) 0.60301 (9) 0.35924 (6) 0.01063 (14)
O8 0.55470 (4) 0.45990 (7) 0.43131 (6) 0.00885 (14)
O9 0.24384 (4) 0.56940 (8) 0.63432 (6) 0.01142 (15)
O10 0.11777 (4) 0.54245 (7) 0.62321 (6) 0.00823 (14)
O11 0.17814 (4) 0.71622 (8) 0.73771 (6) 0.01017 (14)
O12 0.19385 (4) 0.46544 (8) 0.77559 (6) 0.00888 (14)
O13 −0.09231 (4) 0.25724 (7) 0.06586 (6) 0.00840 (13)
O14 0.01158 (4) 0.14074 (7) 0.03954 (6) 0.00818 (14)
O15 −0.07987 (4) 0.00350 (7) 0.09080 (6) 0.00757 (13)
O16 −0.01117 (4) 0.16378 (8) 0.21565 (6) 0.01014 (14)
O17 0.34118 (4) 0.65873 (8) 1.09580 (6) 0.01213 (15)
O18 0.35063 (4) 0.79852 (7) 0.94185 (6) 0.00881 (14)
O19 0.42285 (4) 0.58847 (8) 0.98471 (7) 0.01214 (15)
O20 0.29847 (4) 0.57812 (8) 0.91867 (6) 0.01111 (15)
O21 0.20437 (4) 0.09364 (8) 0.48639 (6) 0.00835 (13)
O22 0.11949 (4) 0.05905 (7) 0.59700 (6) 0.00888 (14)
O23 0.14854 (4) 0.29353 (7) 0.54464 (6) 0.00891 (14)
O24 0.08212 (4) 0.14116 (8) 0.41564 (6) 0.01017 (14)
K1 0.287854 (12) 0.17131 (2) 0.079146 (18) 0.00949 (4)
K2 0.420108 (12) 0.44811 (2) 0.178588 (19) 0.01038 (4)
K3 0.233669 (12) 0.57239 (2) 0.160286 (19) 0.01005 (4)
K4 0.551481 (12) 0.66477 (2) 0.075535 (18) 0.00984 (4)
K5 0.370503 (13) 0.84243 (2) 0.243608 (19) 0.01203 (5)
K6 0.054431 (12) 0.67635 (2) 0.106782 (18) 0.00886 (4)
K7 0.213027 (11) 0.66267 (2) 0.427477 (18) 0.00950 (4)
K8 0.058558 (12) 0.93957 (2) 0.292875 (18) 0.01007 (4)
K9 0.116931 (12) 0.29859 (2) 0.266699 (19) 0.01164 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.00581 (11) 0.00550 (10) 0.00599 (12) −0.00069 (8) 0.00070 (9) −0.00048 (8)
P2 0.00578 (11) 0.00678 (10) 0.00535 (11) 0.00080 (8) 0.00123 (9) 0.00050 (8)
P3 0.00625 (11) 0.00554 (10) 0.00511 (11) −0.00021 (8) 0.00058 (9) 0.00017 (8)
P4 0.00518 (11) 0.00625 (10) 0.00552 (11) −0.00004 (8) 0.00088 (8) −0.00072 (8)
P5 0.00535 (11) 0.00497 (10) 0.00632 (12) −0.00068 (8) 0.00096 (9) −0.00019 (8)
P6 0.00536 (11) 0.00549 (10) 0.00549 (11) 0.00029 (8) 0.00088 (8) 0.00015 (8)
Al1 0.00504 (13) 0.00500 (12) 0.00582 (14) −0.00004 (9) 0.00069 (11) −0.00028 (10)
Al2 0.00504 (13) 0.00437 (12) 0.00522 (14) 0.00060 (9) 0.00042 (10) −0.00012 (10)
Al3 0.00478 (13) 0.00426 (12) 0.00582 (14) 0.00029 (9) 0.00011 (10) −0.00015 (10)
O1 0.0108 (3) 0.0065 (3) 0.0133 (4) −0.0026 (2) 0.0007 (3) 0.0015 (3)
O2 0.0213 (4) 0.0131 (4) 0.0086 (4) 0.0002 (3) 0.0065 (3) 0.0005 (3)
O3 0.0110 (4) 0.0129 (4) 0.0217 (5) 0.0031 (3) 0.0072 (3) −0.0006 (3)
O4 0.0157 (4) 0.0068 (3) 0.0195 (4) −0.0029 (3) −0.0091 (3) 0.0002 (3)
O5 0.0147 (4) 0.0073 (3) 0.0115 (4) −0.0024 (3) 0.0013 (3) 0.0000 (3)
O6 0.0100 (3) 0.0133 (3) 0.0060 (3) 0.0015 (3) 0.0026 (3) −0.0003 (3)
O7 0.0071 (3) 0.0172 (4) 0.0079 (4) 0.0033 (3) 0.0023 (3) 0.0021 (3)
O8 0.0114 (3) 0.0071 (3) 0.0071 (3) 0.0011 (2) −0.0006 (3) 0.0011 (3)
O9 0.0096 (3) 0.0145 (4) 0.0112 (4) −0.0004 (3) 0.0045 (3) −0.0001 (3)
O10 0.0077 (3) 0.0085 (3) 0.0073 (3) 0.0005 (2) −0.0018 (3) −0.0011 (3)
O11 0.0130 (4) 0.0069 (3) 0.0100 (4) 0.0001 (3) 0.0004 (3) −0.0022 (3)
O12 0.0094 (3) 0.0087 (3) 0.0073 (3) −0.0019 (2) −0.0016 (3) 0.0030 (3)
O13 0.0081 (3) 0.0079 (3) 0.0094 (3) 0.0018 (2) 0.0020 (3) 0.0008 (3)
O14 0.0064 (3) 0.0083 (3) 0.0108 (4) 0.0005 (2) 0.0042 (3) 0.0004 (3)
O15 0.0091 (3) 0.0068 (3) 0.0072 (3) −0.0023 (2) 0.0026 (3) −0.0008 (2)
O16 0.0112 (4) 0.0116 (3) 0.0069 (4) 0.0002 (3) −0.0004 (3) −0.0022 (3)
O17 0.0165 (4) 0.0117 (3) 0.0093 (4) −0.0007 (3) 0.0054 (3) 0.0000 (3)
O18 0.0083 (3) 0.0057 (3) 0.0119 (4) −0.0020 (2) 0.0005 (3) 0.0018 (3)
O19 0.0080 (3) 0.0113 (3) 0.0175 (4) 0.0025 (3) 0.0033 (3) 0.0004 (3)
O20 0.0107 (3) 0.0078 (3) 0.0130 (4) −0.0045 (3) −0.0027 (3) 0.0008 (3)
O21 0.0077 (3) 0.0107 (3) 0.0070 (3) 0.0023 (2) 0.0022 (3) 0.0001 (3)
O22 0.0101 (3) 0.0092 (3) 0.0078 (3) −0.0004 (2) 0.0028 (3) 0.0015 (3)
O23 0.0072 (3) 0.0051 (3) 0.0139 (4) 0.0009 (2) 0.0006 (3) −0.0007 (3)
O24 0.0083 (3) 0.0133 (3) 0.0079 (4) 0.0006 (3) −0.0011 (3) −0.0007 (3)
K1 0.00909 (9) 0.00962 (9) 0.00989 (10) −0.00004 (7) 0.00210 (8) 0.00004 (7)
K2 0.01006 (9) 0.00876 (9) 0.01141 (11) −0.00028 (7) −0.00044 (8) −0.00135 (8)
K3 0.00859 (9) 0.00980 (9) 0.01165 (11) −0.00057 (7) 0.00156 (8) −0.00163 (8)
K4 0.01018 (9) 0.01036 (9) 0.00913 (10) −0.00115 (7) 0.00219 (8) 0.00072 (7)
K5 0.01415 (11) 0.01086 (10) 0.01155 (11) −0.00281 (7) 0.00362 (8) −0.00148 (8)
K6 0.00872 (9) 0.00997 (9) 0.00819 (10) 0.00093 (7) 0.00236 (7) 0.00127 (7)
K7 0.00723 (9) 0.01039 (9) 0.01103 (10) 0.00059 (7) 0.00207 (8) 0.00037 (7)
K8 0.01277 (10) 0.00765 (9) 0.01026 (10) 0.00019 (7) 0.00335 (8) 0.00097 (7)
K9 0.01126 (10) 0.01316 (10) 0.01026 (10) −0.00163 (7) 0.00134 (8) 0.00316 (8)

Geometric parameters (Å, °)

P1—O2 1.4993 (10) O16—K6ix 2.7060 (11)
P1—O3 1.5030 (9) O16—K8xi 2.7225 (10)
P1—O4 1.5645 (10) O16—K8ix 2.8730 (10)
P1—O1 1.5760 (8) O16—K9 2.8864 (10)
P2—O5 1.5011 (9) O17—K3xii 2.6337 (11)
P2—O6 1.5087 (9) O17—K5xii 2.6788 (10)
P2—O7 1.5734 (9) O17—K2xii 2.7296 (10)
P2—O8 1.5829 (8) O18—Al3viii 1.7396 (8)
P3—O9 1.5036 (10) O18—K7viii 2.7891 (10)
P3—O11 1.5062 (8) O18—K5viii 3.1088 (10)
P3—O10 1.5803 (9) O19—K4iv 2.7005 (10)
P3—O12 1.5831 (8) O19—K4xii 2.7761 (11)
P4—O13 1.5049 (8) O19—K2xii 2.9721 (10)
P4—O16 1.5056 (9) O19—K5viii 3.3087 (12)
P4—O14 1.5667 (9) O20—Al2vi 1.7264 (8)
P4—O15 1.5881 (8) O20—K7viii 3.0973 (10)
P5—O19 1.5043 (9) O20—K5viii 3.1013 (12)
P5—O17 1.5049 (9) O21—K3vi 2.8347 (9)
P5—O20 1.5682 (9) O21—K1vi 3.0012 (10)
P5—O18 1.5767 (8) O22—K3vi 2.6539 (10)
P6—O24 1.5029 (10) O22—K6vi 2.6802 (9)
P6—O22 1.5068 (9) O22—K9vi 2.6965 (9)
P6—O23 1.5770 (8) O23—Al1vi 1.7472 (8)
P6—O21 1.5794 (9) O23—K1vi 2.8007 (10)
Al1—O14 1.7366 (9) O23—K9vi 3.3094 (11)
Al1—O10i 1.7457 (9) O24—K8xi 2.5736 (9)
Al1—O23i 1.7472 (8) O24—K9 2.7337 (10)
Al1—O15ii 1.7671 (9) O24—K6ix 2.7531 (10)
Al2—O20i 1.7264 (8) K1—O9i 2.6837 (10)
Al2—O1 1.7449 (9) K1—O23i 2.8007 (10)
Al2—O21 1.7457 (10) K1—O5v 2.8591 (11)
Al2—O12i 1.7472 (10) K1—O21i 3.0012 (10)
Al3—O4 1.7295 (9) K1—O1i 3.0286 (10)
Al3—O18iii 1.7396 (8) K1—O4i 3.1684 (13)
Al3—O8iv 1.7411 (10) K1—O3i 3.2026 (12)
Al3—O7 1.7490 (10) K2—O5v 2.5994 (9)
O1—K4v 2.9576 (11) K2—O17xiii 2.7296 (10)
O1—K1vi 3.0286 (10) K2—O19xiii 2.9721 (10)
O2—K1 2.6202 (10) K3—O17xiii 2.6337 (11)
O2—K2 2.6725 (11) K3—O22i 2.6539 (10)
O2—K3 2.7486 (10) K3—O11iii 2.6683 (9)
O3—K7 2.6779 (10) K3—O21i 2.8347 (9)
O3—K9 2.7316 (11) K4—O19iv 2.7005 (10)
O3—K3 2.9790 (11) K4—O5iii 2.7205 (10)
O3—K1vi 3.2026 (12) K4—O19xiii 2.7761 (11)
O4—K4v 3.0451 (10) K4—O1vii 2.9576 (11)
O4—K1vi 3.1684 (13) K4—O4vii 3.0451 (10)
O5—K2vii 2.5994 (9) K5—O6vii 2.6787 (9)
O5—K4viii 2.7205 (10) K5—O17xiii 2.6788 (10)
O5—K1vii 2.8591 (11) K5—O9iii 2.8544 (12)
O6—K5v 2.6787 (9) K5—O20iii 3.1013 (12)
O6—K2 2.7029 (11) K5—O18iii 3.1088 (10)
O6—K4 2.7219 (9) K5—O8vii 3.2476 (11)
O7—K2 2.8587 (10) K5—O19iii 3.3087 (12)
O7—K5 3.1685 (10) K6—O13x 2.6690 (10)
O8—Al3iv 1.7411 (10) K6—O22i 2.6803 (9)
O8—K5v 3.2476 (11) K6—O16xiv 2.7060 (11)
O9—K1vi 2.6837 (10) K6—O24xiv 2.7531 (10)
O9—K5viii 2.8544 (12) K6—O14x 2.8235 (10)
O9—K7 2.9005 (11) K6—O11iii 2.9867 (12)
O10—Al1vi 1.7457 (9) K6—O10iii 3.0404 (9)
O10—K8viii 2.7834 (11) K7—O13xiv 2.6369 (9)
O10—K6viii 3.0404 (9) K7—O18iii 2.7891 (10)
O11—K3viii 2.6683 (9) K7—O11iii 2.7995 (10)
O11—K7viii 2.7995 (10) K7—O15xiv 3.0928 (10)
O11—K6viii 2.9867 (12) K7—O20iii 3.0973 (10)
O11—K8viii 3.0747 (10) K8—O24xv 2.5736 (9)
O12—Al2vi 1.7472 (10) K8—O13xiv 2.6179 (9)
O12—K8viii 2.9492 (10) K8—O16xv 2.7225 (10)
O12—K9vi 3.0206 (9) K8—O10iii 2.7834 (11)
O13—K8ix 2.6179 (9) K8—O16xiv 2.8730 (10)
O13—K7ix 2.6369 (9) K8—O12iii 2.9492 (10)
O13—K6x 2.6690 (10) K8—O11iii 3.0747 (10)
O14—K6x 2.8235 (10) K9—O22i 2.6965 (9)
O15—Al1ii 1.7671 (9) K9—O15xiv 2.9782 (9)
O15—K9ix 2.9782 (9) K9—O12i 3.0206 (9)
O15—K7ix 3.0928 (10) K9—O23i 3.3094 (11)
O2—P1—O3 114.74 (6) O6—K4—O1vii 95.55 (4)
O2—P1—O4 108.96 (6) O19xiii—K4—O1vii 162.75 (3)
O3—P1—O4 109.93 (5) O19iv—K4—O4vii 130.06 (3)
O2—P1—O1 110.62 (5) O5iii—K4—O4vii 63.12 (3)
O3—P1—O1 109.99 (5) O6—K4—O4vii 112.61 (3)
O4—P1—O1 101.83 (5) O19xiii—K4—O4vii 138.74 (2)
O5—P2—O6 115.50 (5) O1vii—K4—O4vii 47.89 (2)
O5—P2—O7 110.19 (5) O6vii—K5—O17xiii 124.71 (3)
O6—P2—O7 108.14 (5) O6vii—K5—O9iii 107.49 (3)
O5—P2—O8 110.34 (5) O17xiii—K5—O9iii 76.28 (3)
O6—P2—O8 108.08 (5) O6vii—K5—O20iii 101.89 (3)
O7—P2—O8 103.92 (5) O17xiii—K5—O20iii 131.91 (3)
O9—P3—O11 115.78 (5) O9iii—K5—O20iii 79.22 (3)
O9—P3—O10 111.44 (5) O6vii—K5—O18iii 121.40 (3)
O11—P3—O10 106.55 (4) O17xiii—K5—O18iii 107.24 (3)
O9—P3—O12 110.48 (5) O9iii—K5—O18iii 109.57 (3)
O11—P3—O12 109.75 (5) O20iii—K5—O18iii 45.61 (2)
O10—P3—O12 101.90 (5) O6vii—K5—O7 104.90 (3)
O13—P4—O16 114.83 (5) O17xiii—K5—O7 83.91 (3)
O13—P4—O14 107.75 (5) O9iii—K5—O7 147.55 (2)
O16—P4—O14 110.03 (5) O20iii—K5—O7 96.03 (2)
O13—P4—O15 109.38 (5) O18iii—K5—O7 52.43 (2)
O16—P4—O15 109.88 (5) O6vii—K5—O8vii 48.81 (2)
O14—P4—O15 104.43 (4) O17xiii—K5—O8vii 76.48 (3)
O19—P5—O17 114.32 (6) O9iii—K5—O8vii 90.66 (3)
O19—P5—O20 110.19 (5) O20iii—K5—O8vii 144.56 (2)
O17—P5—O20 110.20 (5) O18iii—K5—O8vii 159.77 (2)
O19—P5—O18 110.88 (5) O7—K5—O8vii 109.55 (3)
O17—P5—O18 110.42 (5) O6vii—K5—O19iii 75.39 (3)
O20—P5—O18 99.89 (5) O17xiii—K5—O19iii 149.41 (2)
O24—P6—O22 116.61 (5) O9iii—K5—O19iii 122.93 (3)
O24—P6—O23 108.41 (4) O20iii—K5—O19iii 46.16 (2)
O22—P6—O23 109.19 (5) O18iii—K5—O19iii 46.45 (2)
O24—P6—O21 110.50 (5) O7—K5—O19iii 67.55 (3)
O22—P6—O21 108.33 (5) O8vii—K5—O19iii 122.41 (2)
O23—P6—O21 102.92 (4) O13x—K6—O22i 86.84 (3)
O14—Al1—O10i 111.38 (5) O13x—K6—O16xiv 168.34 (2)
O14—Al1—O23i 109.29 (4) O22i—K6—O16xiv 104.31 (3)
O10i—Al1—O23i 105.73 (4) O13x—K6—O24xiv 112.32 (4)
O14—Al1—O15ii 107.00 (5) O22i—K6—O24xiv 112.38 (3)
O10i—Al1—O15ii 110.15 (4) O16xiv—K6—O24xiv 66.94 (4)
O23i—Al1—O15ii 113.35 (5) O13x—K6—O14x 53.63 (3)
O20i—Al2—O1 107.57 (5) O22i—K6—O14x 133.66 (3)
O20i—Al2—O21 108.87 (4) O16xiv—K6—O14x 117.48 (3)
O1—Al2—O21 109.31 (4) O24xiv—K6—O14x 70.39 (3)
O20i—Al2—O12i 108.74 (4) O13x—K6—O11iii 94.96 (3)
O1—Al2—O12i 111.28 (4) O22i—K6—O11iii 88.10 (3)
O21—Al2—O12i 110.98 (4) O16xiv—K6—O11iii 82.20 (3)
O4—Al3—O18iii 110.83 (5) O24xiv—K6—O11iii 146.01 (3)
O4—Al3—O8iv 110.07 (4) O14x—K6—O11iii 115.41 (3)
O18iii—Al3—O8iv 108.12 (4) O13x—K6—O10iii 69.86 (2)
O4—Al3—O7 107.13 (5) O22i—K6—O10iii 125.73 (3)
O18iii—Al3—O7 105.30 (4) O16xiv—K6—O10iii 100.27 (3)
O8iv—Al3—O7 115.31 (4) O24xiv—K6—O10iii 121.72 (2)
O2—K1—O9i 112.37 (3) O14x—K6—O10iii 67.14 (3)
O2—K1—O23i 93.41 (4) O11iii—K6—O10iii 48.47 (2)
O9i—K1—O23i 77.18 (3) O13xiv—K7—O3 123.45 (3)
O2—K1—O5v 80.25 (4) O13xiv—K7—O18iii 150.88 (2)
O9i—K1—O5v 118.54 (3) O3—K7—O18iii 84.97 (3)
O23i—K1—O5v 164.26 (2) O13xiv—K7—O11iii 78.51 (4)
O2—K1—O21i 79.16 (3) O3—K7—O11iii 93.31 (3)
O9i—K1—O21i 127.19 (3) O18iii—K7—O11iii 95.01 (4)
O23i—K1—O21i 50.22 (2) O13xiv—K7—O9 96.66 (4)
O5v—K1—O21i 114.15 (3) O3—K7—O9 93.94 (3)
O2—K1—O1i 112.50 (3) O18iii—K7—O9 86.56 (4)
O9i—K1—O1i 134.51 (3) O11iii—K7—O9 172.69 (2)
O23i—K1—O1i 93.09 (4) O13xiv—K7—O15xiv 51.54 (2)
O5v—K1—O1i 76.36 (4) O3—K7—O15xiv 73.92 (3)
O21i—K1—O1i 56.35 (3) O18iii—K7—O15xiv 157.43 (2)
O2—K1—O4i 137.20 (3) O11iii—K7—O15xiv 94.11 (3)
O9i—K1—O4i 101.05 (3) O9—K7—O15xiv 87.00 (3)
O23i—K1—O4i 120.30 (3) O13xiv—K7—O20iii 103.94 (3)
O5v—K1—O4i 60.10 (3) O3—K7—O20iii 125.85 (3)
O21i—K1—O4i 101.67 (3) O18iii—K7—O20iii 47.93 (2)
O1i—K1—O4i 46.26 (2) O11iii—K7—O20iii 70.36 (3)
O2—K1—O3i 154.13 (3) O9—K7—O20iii 105.91 (3)
O9i—K1—O3i 87.31 (3) O15xiv—K7—O20iii 154.20 (2)
O23i—K1—O3i 74.07 (4) O24xv—K8—O13xiv 93.69 (3)
O5v—K1—O3i 105.70 (4) O24xv—K8—O16xv 69.23 (3)
O21i—K1—O3i 75.45 (3) O13xiv—K8—O16xv 151.96 (3)
O1i—K1—O3i 47.66 (2) O24xv—K8—O10iii 115.18 (3)
O4i—K1—O3i 46.44 (3) O13xiv—K8—O10iii 123.38 (3)
O5v—K2—O2 84.23 (3) O16xv—K8—O10iii 84.54 (3)
O5v—K2—O6 110.99 (3) O24xv—K8—O16xiv 140.75 (3)
O2—K2—O6 143.69 (3) O13xiv—K8—O16xiv 54.79 (3)
O5v—K2—O17xiii 125.94 (3) O16xv—K8—O16xiv 127.063 (19)
O2—K2—O17xiii 85.69 (3) O10iii—K8—O16xiv 102.63 (2)
O6—K2—O17xiii 108.13 (3) O24xv—K8—O12iii 75.02 (3)
O5v—K2—O7 144.48 (3) O13xiv—K8—O12iii 98.75 (3)
O2—K2—O7 94.94 (3) O16xv—K8—O12iii 97.98 (3)
O6—K2—O7 53.24 (3) O10iii—K8—O12iii 50.65 (3)
O17xiii—K2—O7 89.24 (3) O16xiv—K8—O12iii 127.26 (2)
O5v—K2—O19xiii 91.51 (3) O24xv—K8—O11iii 118.61 (3)
O2—K2—O19xiii 123.16 (3) O13xiv—K8—O11iii 73.93 (3)
O6—K2—O19xiii 90.25 (3) O16xv—K8—O11iii 133.49 (3)
O17xiii—K2—O19xiii 52.44 (3) O10iii—K8—O11iii 49.66 (3)
O7—K2—O19xiii 117.53 (3) O16xiv—K8—O11iii 78.05 (3)
O17xiii—K3—O22i 141.01 (3) O12iii—K8—O11iii 49.56 (2)
O17xiii—K3—O11iii 108.28 (3) O22i—K9—O3 88.63 (4)
O22i—K3—O11iii 95.71 (3) O22i—K9—O24 165.65 (3)
O17xiii—K3—O2 86.06 (3) O3—K9—O24 105.39 (3)
O22i—K3—O2 96.21 (3) O22i—K9—O16 101.07 (4)
O11iii—K3—O2 138.28 (3) O3—K9—O16 169.42 (3)
O17xiii—K3—O21i 88.37 (3) O24—K9—O16 64.73 (3)
O22i—K3—O21i 54.13 (3) O22i—K9—O15xiv 104.22 (3)
O11iii—K3—O21i 137.29 (3) O3—K9—O15xiv 75.10 (3)
O2—K3—O21i 80.11 (3) O24—K9—O15xiv 77.10 (3)
O17xiii—K3—O3 124.84 (3) O16—K9—O15xiv 98.19 (3)
O22i—K3—O3 84.42 (4) O22i—K9—O12i 112.94 (3)
O11iii—K3—O3 89.56 (3) O3—K9—O12i 87.10 (3)
O2—K3—O3 52.20 (3) O24—K9—O12i 71.65 (3)
O21i—K3—O3 113.19 (3) O16—K9—O12i 92.90 (3)
O19iv—K4—O5iii 95.09 (3) O15xiv—K9—O12i 138.23 (3)
O19iv—K4—O6 85.91 (3) O22i—K9—O23i 48.17 (2)
O5iii—K4—O6 175.02 (3) O3—K9—O23i 101.27 (3)
O19iv—K4—O19xiii 80.50 (3) O24—K9—O23i 129.23 (3)
O5iii—K4—O19xiii 90.82 (4) O16—K9—O23i 88.46 (3)
O6—K4—O19xiii 94.15 (4) O15xiv—K9—O23i 152.38 (2)
O19iv—K4—O1vii 86.01 (3) O12i—K9—O23i 67.43 (2)
O5iii—K4—O1vii 79.67 (4)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+3/2, z+1/2; (ix) −x, y−1/2, −z+1/2; (x) −x, −y+1, −z; (xi) x, y−1, z; (xii) x, y, z+1; (xiii) x, y, z−1; (xiv) −x, y+1/2, −z+1/2; (xv) x, y+1, z.

Table 1 Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given.

atom K coord. number K—O distances (Å)
K1 8 2.6202 (10)–3.2026 (12)
K2 7 2.5994 (9)–2.9721 (10)
K3 6 2.6337 (11)–2.9790 (11)
K4 6 2.7005 (10)–3.0451 (10)
K5 8 2.6787 (9)–3.3087 (12)
K6 7 2.6690 (10)–3.0404 (9)
K7 7 2.6369 (9)–3.0973 (10)
K8 7 2.5736 (9)–3.0747 (10)
K9 7 2.6965 (9)–3.3094 (11)

Table 2 Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging oxygens (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8).

atom K K—Oterminal / K—Obridge distances (Å)
K1 2.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16)
K2 2.5994 (12)–2.9722 (14) / 2.8588 (14)
K3 2.6337 (13)–2.9790 (14) / 2.8348 (13)
K4 2.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13)
K5 2.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15)
K6 2.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13)
K7 2.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13)
K8 2.5737 (12)–3.0747 (13) / 2.9491 (13)
K9 2.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2181).

References

  1. Aguilo, M. & Wuensdregt, C. F. (1985). J. Cryst. Growth, 83, 549–559
  2. Barone, J. P. & Nancollas, G. H. (1978). J. Dent. Res.57, 735–742. [DOI] [PubMed]
  3. Dickinson, M. R., Gloster, L. A. W., Hopps, N. W. & King, T. A. (1996). Opt. Commun.132, 275–278.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  5. Masse, R. & Grenier, J. C. (1971). Bull. Soc. Fr. Mineral. Cristallogr.94, 437–439.
  6. Nandini Devi, R. & Vidyasagar, K. (2000). Inorg. Chem.39, 2391–2396. [DOI] [PubMed]
  7. Ng, H. N. & Calvo, C. (1973). Can. J. Chem.51, 2613–2620.
  8. Noor, J. W. & Dam, B. (1986). J. Cryst. Growth, 76, 243–250.
  9. Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001305X/fb2181sup1.cif

e-66-00i37-sup1.cif (130.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001305X/fb2181Isup2.hkl

e-66-00i37-Isup2.hkl (574.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES