Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):m515. doi: 10.1107/S1600536810012547

2-Methyl­piperazinediium tetra­chlorido­zincate(II)

Ming Yin a,*, Shao-Tong Wu a
PMCID: PMC2979142  PMID: 21579012

Abstract

The asymmetric unit of the title compound, (C5H14N2)[ZnCl4], consists of a diprotonated 2-methyl­piperazine cation and a tetra­chloridozincate anion. The ZnII ion is in a slightly distorted tetra­hedral coordination environment. The six-membered piperazine ring adopts a chair conformation. The crystal structure is stabilized by inter­molecular N—H⋯Cl hydrogen bonds.

Related literature

For ferroelectricity in coordination polymers, see: Fu et al. (2007). For nonlinear optical second harmonic generation induced by coordination polymers, see: Qu et al. (2003). For transition-metal complexes of (R)-2-methyl­piperazine, see: Ye et al. (2009).graphic file with name e-66-0m515-scheme1.jpg

Experimental

Crystal data

  • (C5H14N2)[ZnCl4]

  • M r = 309.35

  • Monoclinic, Inline graphic

  • a = 8.4183 (17) Å

  • b = 14.939 (3) Å

  • c = 9.830 (2) Å

  • β = 90.35 (3)°

  • V = 1236.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 291 K

  • 0.35 × 0.25 × 0.15 mm

Data collection

  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.440, T max = 0.678

  • 11203 measured reflections

  • 2423 independent reflections

  • 2112 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.088

  • S = 1.11

  • 2423 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012547/hy2296sup1.cif

e-66-0m515-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012547/hy2296Isup2.hkl

e-66-0m515-Isup2.hkl (119.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.90 2.48 3.346 (3) 161
N1—H1B⋯Cl3ii 0.90 2.55 3.284 (3) 140
N1—H1B⋯Cl1ii 0.90 2.72 3.322 (3) 125
N2—H2A⋯Cl4 0.90 2.25 3.150 (3) 174
N2—H2B⋯Cl2iii 0.90 2.48 3.199 (3) 137
N2—H2B⋯Cl3iii 0.90 2.77 3.444 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Jiangsu University of Science and Technology.

supplementary crystallographic information

Comment

The existence of a chiral center in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (R)-2-methylpiperazine has shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound.

The asymmetric unit of the title compound consists of a diprotonated (±)-2-methylpiperazine cation and a tetrachloridozinc anion with the ZnII ion in a slightly distorted tetrahedral coordination environment (Fig. 1). The 6-membered ring of piperazine adopts a chair conformation. The crystal structure is stabilized by intermolecular N—H···Cl hydrogen bonds (Table 1). The hydrogen bonds form a three-dimensional network (Fig. 2).

Experimental

A mixture of (±)-2-methylpiperazine (1 mmol, 0.100 g), ZnCl2 (1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) was dissolved in 30 ml water by heating to 353 K (10 min), forming a clear solution. The reaction mixture was cooled slowly to room temperature and crystals of the title compound formed after 6 d.

Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.90 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

(C5H14N2)[ZnCl4] F(000) = 624
Mr = 309.35 Dx = 1.662 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2112 reflections
a = 8.4183 (17) Å θ = 3.2–26.0°
b = 14.939 (3) Å µ = 2.81 mm1
c = 9.830 (2) Å T = 291 K
β = 90.35 (3)° Block, colorless
V = 1236.3 (4) Å3 0.35 × 0.25 × 0.15 mm
Z = 4

Data collection

Rigaku SCXmini CCD diffractometer 2423 independent reflections
Radiation source: fine-focus sealed tube 2112 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 13.6612 pixels mm-1 θmax = 26.0°, θmin = 3.2°
ω scans h = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −18→18
Tmin = 0.440, Tmax = 0.678 l = −12→12
11203 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.3805P] where P = (Fo2 + 2Fc2)/3
2423 reflections (Δ/σ)max < 0.001
110 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.45 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3285 (4) 0.0505 (2) 0.7709 (4) 0.0525 (9)
H1C 0.3682 0.0101 0.8405 0.063*
H1D 0.3282 0.0188 0.6848 0.063*
C2 0.4331 (4) 0.1290 (3) 0.7618 (4) 0.0518 (9)
H2C 0.5384 0.1101 0.7346 0.062*
H2D 0.4419 0.1571 0.8505 0.062*
C3 0.2019 (3) 0.2241 (2) 0.6920 (3) 0.0373 (7)
H3 0.2013 0.2560 0.7791 0.045*
C4 0.0994 (4) 0.1433 (2) 0.7029 (4) 0.0429 (8)
H4A 0.0917 0.1145 0.6147 0.051*
H4B −0.0066 0.1613 0.7297 0.051*
C5 0.1468 (4) 0.2868 (2) 0.5815 (4) 0.0521 (9)
H5A 0.1518 0.2569 0.4952 0.078*
H5B 0.2141 0.3386 0.5801 0.078*
H5C 0.0393 0.3047 0.5988 0.078*
Cl1 0.20460 (10) −0.02794 (6) 0.10506 (9) 0.0464 (2)
Cl2 0.19838 (10) 0.21504 (6) 0.07287 (9) 0.0490 (2)
Cl3 −0.04089 (10) 0.10987 (6) 0.33241 (9) 0.0470 (2)
Cl4 0.40648 (12) 0.10940 (8) 0.37036 (10) 0.0670 (3)
N1 0.1644 (3) 0.07835 (19) 0.8046 (3) 0.0428 (7)
H1A 0.1639 0.1037 0.8877 0.051*
H1B 0.1013 0.0297 0.8072 0.051*
N2 0.3697 (3) 0.19527 (18) 0.6611 (3) 0.0379 (6)
H2A 0.3721 0.1708 0.5775 0.046*
H2B 0.4330 0.2438 0.6607 0.046*
Zn1 0.19783 (4) 0.10028 (3) 0.22722 (4) 0.03895 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.056 (2) 0.043 (2) 0.059 (2) 0.0128 (17) 0.0036 (19) 0.0120 (17)
C2 0.0327 (18) 0.066 (2) 0.057 (2) 0.0041 (16) −0.0075 (16) 0.0141 (19)
C3 0.0335 (16) 0.0407 (18) 0.0376 (17) 0.0001 (13) 0.0016 (14) 0.0058 (14)
C4 0.0302 (16) 0.050 (2) 0.049 (2) −0.0042 (14) 0.0006 (14) 0.0125 (16)
C5 0.048 (2) 0.050 (2) 0.058 (2) 0.0058 (16) −0.0006 (18) 0.0196 (18)
Cl1 0.0528 (5) 0.0424 (5) 0.0441 (5) 0.0075 (4) 0.0048 (4) −0.0056 (4)
Cl2 0.0456 (5) 0.0490 (5) 0.0527 (5) 0.0104 (4) 0.0109 (4) 0.0079 (4)
Cl3 0.0396 (4) 0.0540 (5) 0.0474 (5) 0.0026 (4) 0.0088 (4) −0.0057 (4)
Cl4 0.0453 (5) 0.1063 (9) 0.0493 (6) 0.0189 (5) −0.0136 (4) −0.0232 (5)
N1 0.0417 (15) 0.0416 (16) 0.0451 (16) −0.0079 (12) 0.0057 (13) 0.0112 (13)
N2 0.0265 (13) 0.0475 (16) 0.0398 (15) −0.0088 (11) 0.0010 (11) 0.0074 (12)
Zn1 0.0354 (2) 0.0457 (2) 0.0357 (2) 0.00775 (16) −0.00171 (16) −0.00409 (16)

Geometric parameters (Å, °)

C1—C2 1.470 (5) C4—H4B 0.9700
C1—N1 1.482 (4) C5—H5A 0.9600
C1—H1C 0.9700 C5—H5B 0.9600
C1—H1D 0.9700 C5—H5C 0.9600
C2—N2 1.496 (4) Cl1—Zn1 2.2616 (10)
C2—H2C 0.9700 Cl2—Zn1 2.2895 (10)
C2—H2D 0.9700 Cl3—Zn1 2.2702 (11)
C3—C4 1.487 (4) Cl4—Zn1 2.2480 (12)
C3—C5 1.505 (4) N1—H1A 0.9000
C3—N2 1.509 (4) N1—H1B 0.9000
C3—H3 0.9800 N2—H2A 0.9000
C4—N1 1.495 (4) N2—H2B 0.9000
C4—H4A 0.9700
C2—C1—N1 110.4 (3) C3—C5—H5A 109.5
C2—C1—H1C 109.6 C3—C5—H5B 109.5
N1—C1—H1C 109.6 H5A—C5—H5B 109.5
C2—C1—H1D 109.6 C3—C5—H5C 109.5
N1—C1—H1D 109.6 H5A—C5—H5C 109.5
H1C—C1—H1D 108.1 H5B—C5—H5C 109.5
C1—C2—N2 110.9 (3) C1—N1—C4 111.8 (3)
C1—C2—H2C 109.5 C1—N1—H1A 109.3
N2—C2—H2C 109.5 C4—N1—H1A 109.3
C1—C2—H2D 109.5 C1—N1—H1B 109.3
N2—C2—H2D 109.5 C4—N1—H1B 109.3
H2C—C2—H2D 108.0 H1A—N1—H1B 107.9
C4—C3—C5 112.3 (3) C2—N2—C3 112.7 (2)
C4—C3—N2 109.1 (3) C2—N2—H2A 109.0
C5—C3—N2 108.5 (3) C3—N2—H2A 109.0
C4—C3—H3 109.0 C2—N2—H2B 109.0
C5—C3—H3 109.0 C3—N2—H2B 109.0
N2—C3—H3 109.0 H2A—N2—H2B 107.8
C3—C4—N1 111.4 (3) Cl4—Zn1—Cl1 111.20 (4)
C3—C4—H4A 109.3 Cl4—Zn1—Cl3 113.67 (4)
N1—C4—H4A 109.3 Cl1—Zn1—Cl3 108.70 (4)
C3—C4—H4B 109.3 Cl4—Zn1—Cl2 111.39 (5)
N1—C4—H4B 109.3 Cl1—Zn1—Cl2 106.39 (4)
H4A—C4—H4B 108.0 Cl3—Zn1—Cl2 105.07 (4)
N1—C1—C2—N2 −55.8 (4) C3—C4—N1—C1 −57.4 (4)
C5—C3—C4—N1 175.0 (3) C1—C2—N2—C3 55.8 (4)
N2—C3—C4—N1 54.6 (4) C4—C3—N2—C2 −54.5 (4)
C2—C1—N1—C4 57.2 (4) C5—C3—N2—C2 −177.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl2i 0.90 2.48 3.346 (3) 161
N1—H1B···Cl3ii 0.90 2.55 3.284 (3) 140
N1—H1B···Cl1ii 0.90 2.72 3.322 (3) 125
N2—H2A···Cl4 0.90 2.25 3.150 (3) 174
N2—H2B···Cl2iii 0.90 2.48 3.199 (3) 137
N2—H2B···Cl3iii 0.90 2.77 3.444 (3) 133

Symmetry codes: (i) x, y, z+1; (ii) −x, −y, −z+1; (iii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2296).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc.129, 5346–5347. [DOI] [PubMed]
  3. Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Liu, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem.42, 7710–7712. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 42–43. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012547/hy2296sup1.cif

e-66-0m515-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012547/hy2296Isup2.hkl

e-66-0m515-Isup2.hkl (119.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES