Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1073. doi: 10.1107/S1600536810012845

Biphenyl-4-yl 2,2,2-trichloro­ethyl sulfate

Xueshu Li a, Sean Parkin b, Michael W Duffel c, Larry W Robertson a, Hans-Joachim Lehmler a,*
PMCID: PMC2979148  PMID: 21579128

Abstract

The mol­ecular structure of the title compound, C14H11Cl3O4S, displays a biphenyl dihedral angle of 4.9 (2)° between the benzene rings, which is significantly smaller than the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents. The CAr—O bond length of 1.432 (4) Å is comparable with other sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro­ether ester derivatives without electronegative substituents in the sulfated phenyl ring.

Related literature

For similar structures of chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ethyl esters, see: Li et al. (2008, 2010). For a review of structures of sulfuric acid aryl mono esters, see: Brandao et al. (2005). For additional background information, see: Cravedi et al. (1999); Letcher et al. (2000); Liu et al. (2006, 2009); Ohnishi et al. (2000, 2001); Sacco & James (2005); Tampal et al. (2002); Robertson & Hansen (2001); Trotter (1961); Umeda et al. (2002, 2005). For further discussion of dihedral angles in chlorinated biphenyls, see: Shaikh et al. (2008).graphic file with name e-66-o1073-scheme1.jpg

Experimental

Crystal data

  • C14H11Cl3O4S

  • M r = 381.64

  • Monoclinic, Inline graphic

  • a = 7.5761 (2) Å

  • b = 5.8272 (2) Å

  • c = 35.2679 (11) Å

  • β = 90.181 (2)°

  • V = 1556.98 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 90 K

  • 0.43 × 0.40 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker Nonius, 2006) T min = 0.699, T max = 0.944

  • 15429 measured reflections

  • 3041 independent reflections

  • 1939 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.137

  • S = 1.09

  • 3041 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012845/om2330sup1.cif

e-66-o1073-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012845/om2330Isup2.hkl

e-66-o1073-Isup2.hkl (149.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by grant Nos. ES05605, ES012475 and ES013661 from the National Institute of Environmental Health Sciences, NIH.

supplementary crystallographic information

Comment

Exposure to biphenyl and structurally related chlorinated biphenyls has been associated with a range of adverse human health effects, including cancer and arteriosclerosis (Robertson & Hansen, 2001; Umeda et al., 2005, 2002; Letcher et al., 2000). Biphenyl and many lower chlorinated biphenyls are metabolized via hydroxylated biphenyl metabolites to sulfuric acid esters (Liu et al., 2006, 2009; Ohnishi et al., 2000, 2001; Sacco & James, 2005) and glucuronide conjugates (Cravedi et al., 1999; Tampal et al., 2002). While currently little is known about the toxicity of sulfate conjugates of chlorinated biphenyls, it is well established that sulfuric acid biphenyl-4-yl ester is involved in the formation of urinary calculi and, thus, plays a role in the induction of urinary bladder cancer (Ohnishi et al., 2000, 2001). Unfortunately, crystal structures of (chlorinated) sulfuric acid biphenyl-4-yl esters have not been reported, partly because of their chemical instability (Li et al., 2010). Here we report the crystal structure of a structurally related sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether ester.

In particular the CAr—O bond length of sulfuric acid mono- and diesters may be predictive of the stability of the corresponding sulfuric acid conjugates (Brandao et al., 2005; Li et al., 2010). The CAr—O (i.e. C4—O1) bond length of the title compound is 1.432 (4) Å, which is comparable to other, chlorinated sulfuric acid biphenyl-4-yl ester 2,2,2-trichloro-ether esters with no chlorine substituents in the sulfated benzene moiety (1.426 to 1.435 Å) (Li et al., 2010, 2008). In contrast, the CAr—O bond of sulfuric acid 2',3,5,5'-tetrachloro-biphenyl-4-yl ester 2,2,2-trichloro-ethyl ester, an analogous sulfuric acid diester with two chlorine substituents in the sulfated benzene moiety, is slightly shorter (1.405 (4) Å) due to the presence of the electronegative chlorine substituents (Li et al., 2010). Therefore, the sulfuric acid biphenyl-4-yl ester corresponding to the title compound is expected to be relatively stable under physiological conditions, especially compared to aromatic sulfuric acid esters with electronegative substituents in the sulfated benzene ring.

The dihedral angle of biphenyl derivatives is associated with their affinity for cellular target molecules and, therefore, can correlate with their toxicity. The title compound adopts an almost planar conformation, with a solid state dihedral angle of the biphenyl moiety of 4.9 (2)°. Similarly, the parent compound, biphenyl, adopts a planar confirmation in the solid state with a dihedral angle of 0° (Trotter, 1961). These solid state dihedral angles are significantly smaller compared to the calculated dihedral angle of 41.2° of biphenyl derivatives without ortho substituents (Shaikh et al., 2008). These deviations from the energetically most favorable conformation are most likely due to crystal packing effects, which allow the title compound to adopt an energetically less favorable conformation in the solid state by maximizing the lattice energy.

Experimental

The title compound was synthesized from biphenyl-4-ol and 2,2,2-trichloroethyl sulfonyl chloride using 4-dimethylaminopyridine as catalyst (Li et al., 2008). Crystals of the title compound suitable for crystal structure analysis were obtained by slow evaporation of a solution of the title compound in methanol.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.99 Å (CH2) and 0.95 Å (CArH) with Uiso(H) values set to 1.2Ueq of the attached C atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H11Cl3O4S F(000) = 776
Mr = 381.64 Dx = 1.628 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 19102 reflections
a = 7.5761 (2) Å θ = 1.0–27.5°
b = 5.8272 (2) Å µ = 0.74 mm1
c = 35.2679 (11) Å T = 90 K
β = 90.181 (2)° Slab, colourless
V = 1556.98 (8) Å3 0.43 × 0.40 × 0.08 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3041 independent reflections
Radiation source: fine-focus sealed tube 1939 reflections with I > 2σ(I)
graphite Rint = 0.079
Detector resolution: 18 pixels mm-1 θmax = 26.0°, θmin = 2.3°
ω scans at fixed χ = 55° h = −9→9
Absorption correction: multi-scan (SADABS; Bruker Nonius, 2006) k = −7→7
Tmin = 0.699, Tmax = 0.944 l = −43→43
15429 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0617P)2 + 1.446P] where P = (Fo2 + 2Fc2)/3
3041 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.57446 (13) 0.92450 (18) 0.59262 (3) 0.0208 (3)
O1 0.6710 (3) 0.7616 (5) 0.62196 (7) 0.0220 (7)
O2 0.3875 (3) 0.8117 (5) 0.58864 (7) 0.0209 (6)
O3 0.6713 (4) 0.8999 (5) 0.55880 (7) 0.0261 (7)
O4 0.5421 (4) 1.1419 (5) 0.60895 (7) 0.0261 (7)
Cl1 0.21565 (14) 0.28054 (18) 0.52992 (3) 0.0281 (3)
Cl2 0.03163 (13) 0.6724 (2) 0.56132 (3) 0.0289 (3)
Cl3 0.29160 (14) 0.73955 (18) 0.50317 (3) 0.0260 (3)
C1 0.5167 (5) 0.7417 (7) 0.73623 (11) 0.0193 (9)
C2 0.4726 (5) 0.5655 (7) 0.71089 (11) 0.0234 (10)
H2 0.4087 0.4365 0.7199 0.028*
C3 0.5198 (6) 0.5746 (7) 0.67315 (10) 0.0248 (10)
H3 0.4888 0.4539 0.6563 0.030*
C4 0.6121 (5) 0.7612 (7) 0.66051 (10) 0.0192 (9)
C5 0.6597 (5) 0.9377 (8) 0.68381 (11) 0.0262 (10)
H5 0.7243 1.0650 0.6743 0.031*
C6 0.6116 (5) 0.9270 (7) 0.72177 (11) 0.0242 (10)
H6 0.6441 1.0489 0.7383 0.029*
C7 0.3776 (5) 0.5798 (7) 0.57323 (10) 0.0202 (9)
H7A 0.3497 0.4696 0.5937 0.024*
H7B 0.4928 0.5364 0.5621 0.024*
C8 0.2351 (5) 0.5715 (7) 0.54294 (10) 0.0203 (9)
C1' 0.4713 (5) 0.7278 (7) 0.77748 (10) 0.0188 (9)
C2' 0.5201 (6) 0.9018 (7) 0.80282 (11) 0.0268 (10)
H2' 0.5773 1.0352 0.7934 0.032*
C3' 0.4867 (6) 0.8833 (8) 0.84125 (12) 0.0304 (11)
H3' 0.5219 1.0033 0.8579 0.037*
C4' 0.4027 (5) 0.6923 (8) 0.85568 (11) 0.0265 (10)
H4' 0.3811 0.6788 0.8821 0.032*
C5' 0.3503 (6) 0.5199 (8) 0.83080 (11) 0.0330 (11)
H5' 0.2903 0.3887 0.8402 0.040*
C6' 0.3851 (5) 0.5385 (8) 0.79256 (11) 0.0305 (11)
H6' 0.3489 0.4184 0.7761 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0235 (6) 0.0200 (6) 0.0188 (5) 0.0022 (5) −0.0014 (4) 0.0011 (4)
O1 0.0250 (16) 0.0222 (17) 0.0187 (14) 0.0051 (13) −0.0025 (12) 0.0031 (12)
O2 0.0179 (15) 0.0206 (16) 0.0242 (15) 0.0040 (13) −0.0021 (11) −0.0042 (12)
O3 0.0283 (16) 0.0268 (18) 0.0232 (14) 0.0012 (14) 0.0034 (12) 0.0018 (13)
O4 0.0368 (17) 0.0170 (16) 0.0245 (15) 0.0058 (14) −0.0058 (13) −0.0071 (13)
Cl1 0.0364 (6) 0.0211 (6) 0.0267 (5) −0.0025 (5) −0.0040 (5) −0.0021 (4)
Cl2 0.0223 (6) 0.0371 (7) 0.0274 (6) 0.0027 (5) 0.0009 (4) −0.0017 (5)
Cl3 0.0353 (6) 0.0243 (6) 0.0186 (5) −0.0011 (5) 0.0026 (4) 0.0022 (4)
C1 0.014 (2) 0.021 (2) 0.023 (2) 0.0037 (18) −0.0018 (16) 0.0023 (18)
C2 0.032 (2) 0.011 (2) 0.027 (2) −0.0016 (19) −0.0028 (18) 0.0027 (18)
C3 0.038 (3) 0.018 (2) 0.019 (2) −0.004 (2) −0.0042 (19) 0.0019 (18)
C4 0.018 (2) 0.022 (2) 0.0171 (19) 0.0096 (18) −0.0041 (16) −0.0004 (18)
C5 0.024 (2) 0.029 (3) 0.026 (2) −0.009 (2) −0.0031 (18) 0.0021 (19)
C6 0.022 (2) 0.026 (3) 0.024 (2) −0.0067 (19) −0.0041 (17) −0.0071 (19)
C7 0.028 (2) 0.015 (2) 0.0177 (19) 0.0027 (18) −0.0002 (17) −0.0003 (16)
C8 0.024 (2) 0.016 (2) 0.021 (2) 0.0034 (18) 0.0002 (17) −0.0008 (17)
C1' 0.016 (2) 0.018 (2) 0.022 (2) −0.0012 (18) −0.0009 (16) −0.0024 (17)
C2' 0.034 (3) 0.022 (3) 0.024 (2) −0.003 (2) 0.0029 (19) 0.0009 (19)
C3' 0.037 (3) 0.030 (3) 0.024 (2) −0.004 (2) 0.005 (2) −0.006 (2)
C4' 0.026 (2) 0.034 (3) 0.019 (2) 0.005 (2) 0.0074 (18) −0.0019 (19)
C5' 0.043 (3) 0.030 (3) 0.026 (2) −0.013 (2) 0.012 (2) −0.001 (2)
C6' 0.031 (3) 0.031 (3) 0.030 (2) −0.009 (2) 0.006 (2) −0.008 (2)

Geometric parameters (Å, °)

S1—O3 1.410 (3) C5—C6 1.390 (5)
S1—O4 1.414 (3) C5—H5 0.9500
S1—O2 1.567 (3) C6—H6 0.9500
S1—O1 1.582 (3) C7—C8 1.518 (5)
O1—C4 1.432 (4) C7—H7A 0.9900
O2—C7 1.459 (5) C7—H7B 0.9900
Cl1—C8 1.762 (4) C1'—C6' 1.389 (6)
Cl2—C8 1.774 (4) C1'—C2' 1.400 (5)
Cl3—C8 1.765 (4) C2'—C3' 1.384 (5)
C1—C6 1.395 (6) C2'—H2' 0.9500
C1—C2 1.401 (5) C3'—C4' 1.380 (6)
C1—C1' 1.498 (5) C3'—H3' 0.9500
C2—C3 1.380 (5) C4'—C5' 1.391 (6)
C2—H2 0.9500 C4'—H4' 0.9500
C3—C4 1.368 (6) C5'—C6' 1.379 (5)
C3—H3 0.9500 C5'—H5' 0.9500
C4—C5 1.364 (5) C6'—H6' 0.9500
O3—S1—O4 121.83 (18) C8—C7—H7A 109.9
O3—S1—O2 110.75 (16) O2—C7—H7B 109.9
O4—S1—O2 104.74 (16) C8—C7—H7B 109.9
O3—S1—O1 104.57 (16) H7A—C7—H7B 108.3
O4—S1—O1 110.58 (15) C7—C8—Cl1 105.8 (3)
O2—S1—O1 102.89 (15) C7—C8—Cl3 111.6 (3)
C4—O1—S1 118.5 (2) Cl1—C8—Cl3 110.3 (2)
C7—O2—S1 117.8 (2) C7—C8—Cl2 110.5 (3)
C6—C1—C2 117.1 (4) Cl1—C8—Cl2 110.0 (2)
C6—C1—C1' 121.1 (4) Cl3—C8—Cl2 108.6 (2)
C2—C1—C1' 121.7 (4) C6'—C1'—C2' 117.0 (4)
C3—C2—C1 121.7 (4) C6'—C1'—C1 121.6 (4)
C3—C2—H2 119.2 C2'—C1'—C1 121.3 (4)
C1—C2—H2 119.2 C3'—C2'—C1' 121.3 (4)
C4—C3—C2 118.6 (4) C3'—C2'—H2' 119.3
C4—C3—H3 120.7 C1'—C2'—H2' 119.3
C2—C3—H3 120.7 C4'—C3'—C2' 120.7 (4)
C5—C4—C3 122.5 (4) C4'—C3'—H3' 119.7
C5—C4—O1 119.2 (4) C2'—C3'—H3' 119.7
C3—C4—O1 118.2 (3) C3'—C4'—C5' 118.7 (4)
C4—C5—C6 118.5 (4) C3'—C4'—H4' 120.6
C4—C5—H5 120.8 C5'—C4'—H4' 120.6
C6—C5—H5 120.8 C6'—C5'—C4' 120.4 (4)
C5—C6—C1 121.6 (4) C6'—C5'—H5' 119.8
C5—C6—H6 119.2 C4'—C5'—H5' 119.8
C1—C6—H6 119.2 C5'—C6'—C1' 121.9 (4)
O2—C7—C8 109.1 (3) C5'—C6'—H6' 119.1
O2—C7—H7A 109.9 C1'—C6'—H6' 119.1
O3—S1—O1—C4 175.2 (3) C1'—C1—C6—C5 177.7 (4)
O4—S1—O1—C4 42.4 (3) S1—O2—C7—C8 −132.5 (3)
O2—S1—O1—C4 −69.0 (3) O2—C7—C8—Cl1 −173.5 (2)
O3—S1—O2—C7 48.4 (3) O2—C7—C8—Cl3 66.5 (3)
O4—S1—O2—C7 −178.5 (2) O2—C7—C8—Cl2 −54.5 (4)
O1—S1—O2—C7 −62.8 (3) C6—C1—C1'—C6' −176.6 (4)
C6—C1—C2—C3 −0.4 (6) C2—C1—C1'—C6' 0.7 (6)
C1'—C1—C2—C3 −177.7 (4) C6—C1—C1'—C2' 1.0 (6)
C1—C2—C3—C4 0.1 (6) C2—C1—C1'—C2' 178.2 (4)
C2—C3—C4—C5 0.3 (6) C6'—C1'—C2'—C3' 1.2 (6)
C2—C3—C4—O1 175.7 (3) C1—C1'—C2'—C3' −176.4 (4)
S1—O1—C4—C5 −77.2 (4) C1'—C2'—C3'—C4' −0.5 (7)
S1—O1—C4—C3 107.2 (4) C2'—C3'—C4'—C5' −0.8 (7)
C3—C4—C5—C6 −0.3 (6) C3'—C4'—C5'—C6' 1.2 (7)
O1—C4—C5—C6 −175.7 (3) C4'—C5'—C6'—C1' −0.5 (7)
C4—C5—C6—C1 −0.1 (6) C2'—C1'—C6'—C5' −0.8 (6)
C2—C1—C6—C5 0.4 (6) C1—C1'—C6'—C5' 176.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2330).

References

  1. Brandao, T. A. S., Priebe, J. P., Damasceno, A. S., Bortoluzzia, A. J., Kirby, A. J. & Nome, F. (2005). J. Mol. Struct.734, 205–209.
  2. Bruker Nonius (2006). APEX2 and SAINT Bruker Nonius AXS Inc., Madison, Wisconsin, USA.
  3. Cravedi, J. P., Lafuente, A., Baradat, M., Hillenweck, A. & Perdu-Durand, E. (1999). Xenobiotica, 29, 499–509. [DOI] [PubMed]
  4. Letcher, R. J., Klasson-Wehler, E. & Bergman, A. (2000). The Handbook of Environmental Chemistry, Vol. 3, Part K, New types of Persistent Halogenated Compounds, edited by J. Paasivirta, pp. 315–359. Heidelberg: Springer Verlag.
  5. Li, X., Parkin, S., Duffel, M. W., Robertson, L. W. & Lehmler, H.-J. (2010). Environ. Int. doi:10.1016/j.envint.2009.1002.1005. [DOI] [PMC free article] [PubMed]
  6. Li, X., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o2464. [DOI] [PMC free article] [PubMed]
  7. Liu, Y., Apak, T. I., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2006). Chem. Res. Toxicol.19, 1420–1425. [DOI] [PubMed]
  8. Liu, Y., Smart, J. T., Song, Y., Lehmler, H.-J., Robertson, L. W. & Duffel, M. W. (2009). Drug Metab. Dispos.37, 1065–1072. [DOI] [PMC free article] [PubMed]
  9. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Ohnishi, M., Yajima, H., Takemura, T., Yamamoto, S., Mastushima, T. & Ishii, T. (2000). J. Health Sci.46, 299–303.
  11. Ohnishi, M., Yajima, H., Takeuchi, T., Saito, M., Yamazaki, K., Kasai, T., Nagano, K., Yamamoto, S., Matsushima, T. & Ishii, T. (2001). Toxicol. Appl. Pharmacol.174, 122–129. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Robertson, L. W. & Hansen, L. G. (2001). Recent Advances in the Environmental Toxicology and Health Effects of PCBs Lexington: University Press of Kentucky.
  14. Sacco, J. C. & James, M. O. (2005). Drug Metab. Dispos.33, 1341–1348. [DOI] [PubMed]
  15. Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Tampal, N., Lehmler, H.-J., Espandiari, P., Malmberg, T. & Robertson, L. W. (2002). Chem. Res. Toxicol.15, 1259–1266. [DOI] [PubMed]
  18. Trotter, J. (1961). Acta Cryst.14, 1135–1140.
  19. Umeda, Y., Aiso, S., Yamazaki, K., Ohnishi, M., Arito, H., Nagano, K., Yamamoto, S. & Matsushima, T. (2005). J. Vet. Med. Sci.67, 417–424. [DOI] [PubMed]
  20. Umeda, Y., Arito, H., Kano, H., Ohnishi, M., Matsumoto, M., Nagano, K., Yamamoto, S. & Matsushima, T. (2002). J. Occup. Health, 44, 176–183. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012845/om2330sup1.cif

e-66-o1073-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012845/om2330Isup2.hkl

e-66-o1073-Isup2.hkl (149.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES