Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):i45. doi: 10.1107/S1600536810015175

Potassium zinc borate, KZnB3O6

Yang Wu a,, Ji-Yong Yao a, Jian-Xiu Zhang a,*, Pei-Zhen Fu a, Yi-Cheng Wu a
PMCID: PMC2979155  PMID: 21578991

Abstract

The title compound, KZnB3O6 contains a remarkable [B6O12]6− group (Inline graphic symmetry) formed by two rings linked by edge-sharing BO4 tetra­hedra, a feature that has only been observed previously under high pressure conditions. These borate groups are connected through distorted ZnO4 tetra­hedra in edge-shared pairs (Inline graphic symmetry), forming a three-dimensional network whose cavities are filled by K+ cations.

Related literature

For an independent determination of the title compound, see: Chen et al. (2010). For related structures, see: Chen et al. (2005); Emme & Huppertz (2003, 2004, 2005); Huppertz (2003); Huppertz & Emme (2004); Huppertz & von der Eltz (2002); Knyrim et al. (2007); Smith et al. (1992).

Experimental

Crystal data

  • KZnB3O6

  • M r = 232.90

  • Triclinic, Inline graphic

  • a = 6.7139 (13) Å

  • b = 6.9301 (14) Å

  • c = 7.0632 (14) Å

  • α = 63.12 (3)°

  • β = 72.02 (3)°

  • γ = 68.99 (3)°

  • V = 269.37 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 93 K

  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.480, T max = 1.000

  • 2707 measured reflections

  • 1223 independent reflections

  • 1118 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020

  • wR(F 2) = 0.050

  • S = 0.94

  • 1223 reflections

  • 100 parameters

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015175/mg2092sup1.cif

e-66-00i45-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015175/mg2092Isup2.hkl

e-66-00i45-Isup2.hkl (60.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Kaibei Yu, the State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, for collecting the single crystal X-ray diffraction data. This work was supported by the National Natural Science Foundation of China (grant No. 90922036).

supplementary crystallographic information

Comment

In efforts to identify new borates as optical materials or catalysts, investigations have been carried out in the K2O–ZnO–B2O3 system, where only one quaternary compound so far, KZn4B3O9, has been structurally characterized (Smith et al., 1992; Chen et al., 2005). Here, we report a new compound, KZnB3O6, with an unusual anion group. It is the first example of a borate prepared at ambient conditions that contains edge-sharing BO4 tetrahedra, a feature that has only been previously found in high-pressure phases (Huppertz & von der Eltz, 2002; Huppertz, 2003; Huppertz & Emme, 2004; Emme & Huppertz, 2003, 2004, 2005; Knyrim et al., 2007).

The structure consists of BO3 triangles, BO4 tetrahedra, and ZnO4 tetrahedra linked to form a three-dimensional framework whose cavities are filled with K+ cations in nine-coordinate environments (Fig. 1). The fundamental building block is a [B6O12]6- anion in which two six-membered rings formed by borate polyhedra are connected through a shared edge between two BO4 tetrahedra (Fig. 2). Within the resulting B2O2 ring, the transannular B–B distance [2.080 (5) Å] is similar to those in HP-NiB2O4 [2.088 (2) Å] and Dy4B6O15 [2.072 (8) Å] (Knyrim et al., 2007; Huppertz & von der Eltz, 2002). The Raman spectrum of KZnB3O6 shows bands at 1319 and 1456 cm-1, which lie in the range (about 1200 to 1450 cm-1) expected for the Raman-active modes of edge-sharing BO4 tetrahedra (Knyrim et al., 2007). Two distorted ZnO4 tetrahedra also share a common edge, similar to the case of Zn3B2O6 (Chen et al., 2005).

Experimental

A mixture of 7 mmol K2CO3, 10 mmol ZnO, and 43 mmol H3BO3 (all from Beijing Chemical Reagents Company) was heated to 1173 K in a platinum crucible. The transparent melt was cooled slowly from 1173 K to 1053 K at 1 K h-1. Upon further cooling to room temperature, column-shaped colorless crystals were obtained.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

KZnB3O6 viewed along b axis showing ZnO4 tetrahedra (magenta) linked by BO3 triangles and BO4 tetrahedra, with K+ cations (blue) located within the three-dimensional framework.

Fig. 2.

Fig. 2.

[B6O12]6- anion, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, -y, -z.]

Crystal data

KZnB3O6 Z = 2
Mr = 232.90 F(000) = 224
Triclinic, P1 Dx = 2.871 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.7139 (13) Å Cell parameters from 1009 reflections
b = 6.9301 (14) Å θ = 3.3–27.5°
c = 7.0632 (14) Å µ = 5.29 mm1
α = 63.12 (3)° T = 93 K
β = 72.02 (3)° Prism, colorless
γ = 68.99 (3)° 0.50 × 0.30 × 0.20 mm
V = 269.37 (12) Å3

Data collection

Rigaku Saturn 724+ diffractometer 1223 independent reflections
Radiation source: fine-focus sealed tube 1118 reflections with I > 2σ(I)
graphite Rint = 0.023
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −7→8
Tmin = 0.480, Tmax = 1.000 k = −8→9
2707 measured reflections l = −9→8

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020 Secondary atom site location: difference Fourier map
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.030P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max = 0.001
1223 reflections Δρmax = 0.38 e Å3
100 parameters Δρmin = −0.58 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K 0.25708 (8) 0.29494 (8) 0.57923 (7) 0.00606 (12)
Zn 0.67490 (4) 0.35335 (4) 0.12712 (4) 0.00346 (9)
B1 0.0964 (4) 0.9933 (4) 0.0944 (4) 0.0048 (5)
B2 0.2441 (4) 0.8171 (4) 0.4350 (4) 0.0050 (5)
B3 0.2977 (4) 0.1817 (4) 0.1685 (4) 0.0052 (5)
O1 0.8584 (2) 0.0829 (3) 0.0849 (2) 0.0046 (3)
O2 0.3702 (3) 0.3605 (3) 0.1211 (2) 0.0054 (3)
O3 0.1393 (3) 0.8112 (3) 0.2984 (2) 0.0055 (3)
O4 0.7213 (3) 0.3533 (3) 0.3794 (2) 0.0065 (3)
O5 0.1989 (3) 0.1716 (3) 0.0323 (2) 0.0056 (3)
O6 0.3232 (3) 0.0056 (3) 0.3678 (2) 0.0058 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K 0.0064 (3) 0.0064 (2) 0.0060 (2) −0.00214 (19) −0.00063 (19) −0.00281 (19)
Zn 0.00389 (15) 0.00353 (14) 0.00324 (14) −0.00047 (10) −0.00134 (10) −0.00143 (10)
B1 0.0042 (12) 0.0045 (12) 0.0061 (11) 0.0002 (10) −0.0021 (9) −0.0027 (9)
B2 0.0038 (12) 0.0070 (12) 0.0047 (11) −0.0002 (10) −0.0002 (9) −0.0041 (9)
B3 0.0027 (12) 0.0052 (12) 0.0061 (11) 0.0011 (10) −0.0001 (9) −0.0030 (9)
O1 0.0036 (8) 0.0068 (8) 0.0046 (7) −0.0004 (6) −0.0018 (6) −0.0032 (6)
O2 0.0048 (8) 0.0056 (8) 0.0062 (7) −0.0020 (6) −0.0024 (6) −0.0013 (6)
O3 0.0058 (8) 0.0053 (8) 0.0055 (7) −0.0013 (6) −0.0030 (6) −0.0008 (6)
O4 0.0096 (9) 0.0056 (8) 0.0050 (7) −0.0022 (7) −0.0034 (6) −0.0013 (6)
O5 0.0074 (8) 0.0052 (7) 0.0044 (7) −0.0024 (6) −0.0019 (6) −0.0008 (6)
O6 0.0071 (8) 0.0059 (8) 0.0056 (7) −0.0022 (7) −0.0035 (6) −0.0013 (6)

Geometric parameters (Å, °)

K—O4i 2.6404 (16) B1—B1viii 2.080 (5)
K—O3ii 2.7890 (18) B1—Kii 3.286 (3)
K—O1iii 2.791 (2) B1—Kix 3.330 (3)
K—O6 2.8476 (17) B2—O4i 1.326 (3)
K—O5iv 2.8491 (17) B2—O3 1.380 (3)
K—O6iii 2.856 (2) B2—O6vi 1.412 (3)
K—O2 2.9418 (17) B2—Ki 3.135 (3)
K—O4 3.0888 (19) B3—O2 1.357 (3)
K—B2i 3.135 (3) B3—O5 1.363 (3)
K—O3 3.144 (2) B3—O6 1.395 (3)
K—B3 3.244 (3) O1—B1v 1.492 (3)
K—B2 3.261 (3) O1—B1x 1.503 (3)
Zn—O4 1.9013 (15) O1—Kiii 2.791 (2)
Zn—O1 1.9347 (17) O2—Znv 1.9628 (18)
Zn—O2v 1.9628 (18) O3—Kii 2.7890 (18)
Zn—O2 2.0414 (16) O4—B2i 1.326 (3)
Zn—Znv 2.9584 (14) O4—Ki 2.6404 (16)
B1—O3 1.450 (3) O5—B1xi 1.458 (3)
B1—O5vi 1.458 (3) O5—Kxii 2.8491 (17)
B1—O1v 1.492 (3) O6—B2xi 1.412 (3)
B1—O1vii 1.503 (3) O6—Kiii 2.856 (2)
O4i—K—O3ii 119.60 (6) O1—Zn—Kiii 41.67 (5)
O4i—K—O1iii 125.80 (5) O2v—Zn—Kiii 153.56 (5)
O3ii—K—O1iii 52.15 (6) O2—Zn—Kiii 83.72 (6)
O4i—K—O6 156.86 (5) Znv—Zn—Kiii 121.23 (3)
O3ii—K—O6 76.47 (5) K—Zn—Kiii 75.71 (4)
O1iii—K—O6 76.88 (5) O4—Zn—Ki 32.09 (5)
O4i—K—O5iv 75.13 (5) O1—Zn—Ki 131.51 (5)
O3ii—K—O5iv 81.16 (6) O2v—Zn—Ki 85.63 (5)
O1iii—K—O5iv 51.22 (5) O2—Zn—Ki 118.91 (5)
O6—K—O5iv 126.26 (5) Znv—Zn—Ki 106.44 (3)
O4i—K—O6iii 103.77 (5) K—Zn—Ki 75.22 (3)
O3ii—K—O6iii 127.90 (5) Kiii—Zn—Ki 120.74 (2)
O1iii—K—O6iii 79.99 (6) O3—B1—O5vi 113.83 (19)
O6—K—O6iii 73.35 (6) O3—B1—O1v 113.47 (18)
O5iv—K—O6iii 83.76 (6) O5vi—B1—O1v 111.49 (18)
O4i—K—O2 109.74 (5) O3—B1—O1vii 112.28 (18)
O3ii—K—O2 101.75 (6) O5vi—B1—O1vii 111.87 (19)
O1iii—K—O2 124.46 (5) O1v—B1—O1vii 92.02 (17)
O6—K—O2 47.88 (5) O3—B1—B1viii 124.0 (2)
O5iv—K—O2 171.41 (5) O5vi—B1—B1viii 122.1 (2)
O6iii—K—O2 88.14 (6) O1v—B1—B1viii 46.22 (12)
O4i—K—O4 72.24 (6) O1vii—B1—B1viii 45.79 (12)
O3ii—K—O4 167.20 (5) O3—B1—Kii 57.50 (11)
O1iii—K—O4 126.59 (6) O5vi—B1—Kii 150.31 (15)
O6—K—O4 90.79 (5) O1v—B1—Kii 97.21 (12)
O5iv—K—O4 107.95 (5) O1vii—B1—Kii 57.78 (10)
O6iii—K—O4 46.94 (5) B1viii—B1—Kii 72.83 (13)
O2—K—O4 67.96 (5) O3—B1—Kix 151.61 (16)
O4i—K—B2i 79.31 (7) O5vi—B1—Kix 58.34 (11)
O3ii—K—B2i 154.09 (6) O1v—B1—Kix 56.22 (10)
O1iii—K—B2i 103.00 (7) O1vii—B1—Kix 95.19 (13)
O6—K—B2i 91.80 (6) B1viii—B1—Kix 70.52 (13)
O5iv—K—B2i 87.75 (7) Kii—B1—Kix 143.35 (9)
O6iii—K—B2i 26.75 (5) O4i—B2—O3 121.2 (2)
O2—K—B2i 86.28 (7) O4i—B2—O6vi 120.5 (2)
O4—K—B2i 24.59 (6) O3—B2—O6vi 118.2 (2)
O4i—K—O3 47.12 (4) O4i—B2—Ki 75.76 (14)
O3ii—K—O3 102.99 (5) O3—B2—Ki 128.91 (16)
O1iii—K—O3 150.43 (5) O6vi—B2—Ki 65.55 (12)
O6—K—O3 116.19 (5) O4i—B2—K 51.19 (11)
O5iv—K—O3 116.19 (5) O3—B2—K 72.85 (12)
O6iii—K—O3 128.27 (5) O6vi—B2—K 158.31 (17)
O2—K—O3 71.27 (5) Ki—B2—K 92.88 (8)
O4—K—O3 81.38 (6) O2—B3—O5 122.7 (2)
B2i—K—O3 102.92 (7) O2—B3—O6 117.3 (2)
O4i—K—B3 133.81 (6) O5—B3—O6 119.95 (19)
O3ii—K—B3 82.79 (6) O2—B3—K 65.06 (11)
O1iii—K—B3 100.12 (6) O5—B3—K 149.00 (16)
O6—K—B3 25.42 (5) O6—B3—K 61.19 (11)
O5iv—K—B3 151.06 (6) B1v—O1—B1x 87.98 (17)
O6iii—K—B3 87.36 (6) B1v—O1—Zn 132.19 (14)
O2—K—B3 24.73 (5) B1x—O1—Zn 125.03 (13)
O4—K—B3 85.14 (6) B1v—O1—Kiii 97.40 (12)
B2i—K—B3 96.54 (7) B1x—O1—Kiii 95.11 (12)
O3—K—B3 90.81 (6) Zn—O1—Kiii 110.89 (7)
O4i—K—B2 23.03 (5) B3—O2—Znv 126.73 (15)
O3ii—K—B2 117.32 (7) B3—O2—Zn 126.50 (16)
O1iii—K—B2 145.28 (6) Znv—O2—Zn 95.24 (7)
O6—K—B2 136.67 (6) B3—O2—K 90.21 (13)
O5iv—K—B2 97.00 (6) Znv—O2—K 126.87 (7)
O6iii—K—B2 113.85 (6) Zn—O2—K 87.73 (6)
O2—K—B2 88.87 (6) B2—O3—B1 123.45 (18)
O4—K—B2 71.34 (6) B2—O3—Kii 124.93 (14)
B2i—K—B2 87.12 (8) B1—O3—Kii 96.48 (13)
O3—K—B2 24.79 (5) B2—O3—K 82.36 (13)
B3—K—B2 111.77 (7) B1—O3—K 149.76 (13)
O4—Zn—O1 109.34 (7) Kii—O3—K 77.01 (5)
O4—Zn—O2v 117.70 (7) B2i—O4—Zn 128.77 (15)
O1—Zn—O2v 120.18 (7) B2i—O4—Ki 105.78 (13)
O4—Zn—O2 117.57 (7) Zn—O4—Ki 125.42 (8)
O1—Zn—O2 104.70 (7) B2i—O4—K 79.65 (13)
O2v—Zn—O2 84.76 (7) Zn—O4—K 86.04 (6)
O4—Zn—Znv 128.89 (6) Ki—O4—K 107.76 (6)
O1—Zn—Znv 120.57 (5) B3—O5—B1xi 122.58 (18)
O2v—Zn—Znv 43.41 (5) B3—O5—Kxii 136.44 (13)
O2—Zn—Znv 41.35 (5) B1xi—O5—Kxii 95.84 (12)
O4—Zn—K 61.28 (5) B3—O6—B2xi 121.34 (18)
O1—Zn—K 117.35 (6) B3—O6—K 93.39 (12)
O2v—Zn—K 116.70 (6) B2xi—O6—K 130.47 (13)
O2—Zn—K 56.78 (5) B3—O6—Kiii 118.51 (14)
Znv—Zn—K 85.42 (3) B2xi—O6—Kiii 87.70 (14)
O4—Zn—Kiii 88.71 (6) K—O6—Kiii 106.65 (6)
O4i—K—Zn—O4 50.46 (9) Kiii—Zn—O2—Znv −156.16 (5)
O3ii—K—Zn—O4 −170.08 (8) Ki—Zn—O2—Znv 82.07 (6)
O1iii—K—Zn—O4 −95.13 (8) O4—Zn—O2—K −8.22 (8)
O6—K—Zn—O4 −137.47 (7) O1—Zn—O2—K 113.32 (6)
O5iv—K—Zn—O4 −19.56 (8) O2v—Zn—O2—K −126.83 (7)
O6iii—K—Zn—O4 −53.81 (7) Znv—Zn—O2—K −126.83 (7)
O2—K—Zn—O4 171.69 (8) Kiii—Zn—O2—K 77.02 (5)
B2i—K—Zn—O4 −23.73 (8) Ki—Zn—O2—K −44.76 (6)
O3—K—Zn—O4 95.11 (7) O4i—K—O2—B3 −168.31 (13)
B3—K—Zn—O4 −163.59 (8) O3ii—K—O2—B3 −40.67 (14)
B2—K—Zn—O4 70.13 (8) O1iii—K—O2—B3 11.21 (15)
O4i—K—Zn—O1 148.61 (6) O6—K—O2—B3 18.64 (13)
O3ii—K—Zn—O1 −71.93 (8) O6iii—K—O2—B3 87.72 (14)
O1iii—K—Zn—O1 3.02 (9) O4—K—O2—B3 131.35 (14)
O6—K—Zn—O1 −39.32 (6) B2i—K—O2—B3 114.45 (14)
O5iv—K—Zn—O1 78.59 (8) O3—K—O2—B3 −140.57 (14)
O6iii—K—Zn—O1 44.34 (6) B2—K—O2—B3 −158.37 (14)
O2—K—Zn—O1 −90.16 (8) O4i—K—O2—Znv −29.68 (10)
O4—K—Zn—O1 98.15 (8) O3ii—K—O2—Znv 97.96 (9)
B2i—K—Zn—O1 74.42 (8) O1iii—K—O2—Znv 149.85 (8)
O3—K—Zn—O1 −166.75 (6) O6—K—O2—Znv 157.27 (11)
B3—K—Zn—O1 −65.44 (8) O6iii—K—O2—Znv −133.65 (9)
B2—K—Zn—O1 168.27 (7) O4—K—O2—Znv −90.02 (9)
O4i—K—Zn—O2v −58.07 (6) B2i—K—O2—Znv −106.92 (10)
O3ii—K—Zn—O2v 81.39 (8) O3—K—O2—Znv −1.94 (7)
O1iii—K—Zn—O2v 156.34 (7) B3—K—O2—Znv 138.63 (18)
O6—K—Zn—O2v 114.00 (6) B2—K—O2—Znv −19.73 (9)
O5iv—K—Zn—O2v −128.09 (7) O4i—K—O2—Zn 65.17 (7)
O6iii—K—Zn—O2v −162.34 (6) O3ii—K—O2—Zn −167.19 (5)
O2—K—Zn—O2v 63.16 (9) O1iii—K—O2—Zn −115.30 (6)
O4—K—Zn—O2v −108.53 (8) O6—K—O2—Zn −107.88 (8)
B2i—K—Zn—O2v −132.26 (8) O6iii—K—O2—Zn −38.80 (5)
O3—K—Zn—O2v −13.42 (6) O4—K—O2—Zn 4.83 (5)
B3—K—Zn—O2v 87.88 (8) B2i—K—O2—Zn −12.07 (6)
B2—K—Zn—O2v −38.41 (7) O3—K—O2—Zn 92.91 (6)
O4i—K—Zn—O2 −121.23 (7) B3—K—O2—Zn −126.52 (15)
O3ii—K—Zn—O2 18.23 (7) B2—K—O2—Zn 75.12 (7)
O1iii—K—Zn—O2 93.19 (8) O4i—B2—O3—B1 179.7 (2)
O6—K—Zn—O2 50.85 (7) O6vi—B2—O3—B1 −3.2 (3)
O5iv—K—Zn—O2 168.75 (8) Ki—B2—O3—B1 −83.4 (3)
O6iii—K—Zn—O2 134.50 (6) K—B2—O3—B1 −162.96 (19)
O4—K—Zn—O2 −171.69 (8) O4i—B2—O3—Kii 50.9 (3)
B2i—K—Zn—O2 164.58 (8) O6vi—B2—O3—Kii −132.00 (17)
O3—K—Zn—O2 −76.58 (7) Ki—B2—O3—Kii 147.80 (11)
B3—K—Zn—O2 24.72 (8) K—B2—O3—Kii 68.26 (12)
B2—K—Zn—O2 −101.56 (8) O4i—B2—O3—K −17.4 (2)
O4i—K—Zn—Znv −89.18 (4) O6vi—B2—O3—K 159.7 (2)
O3ii—K—Zn—Znv 50.27 (6) Ki—B2—O3—K 79.54 (16)
O1iii—K—Zn—Znv 125.23 (5) O5vi—B1—O3—B2 7.7 (3)
O6—K—Zn—Znv 82.89 (4) O1v—B1—O3—B2 136.6 (2)
O5iv—K—Zn—Znv −159.20 (5) O1vii—B1—O3—B2 −120.7 (2)
O6iii—K—Zn—Znv 166.54 (4) B1viii—B1—O3—B2 −171.5 (2)
O2—K—Zn—Znv 32.04 (5) Kii—B1—O3—B2 −140.0 (2)
O4—K—Zn—Znv −139.64 (6) Kix—B1—O3—B2 74.7 (4)
B2i—K—Zn—Znv −163.37 (6) O5vi—B1—O3—Kii 147.63 (16)
O3—K—Zn—Znv −44.54 (4) O1v—B1—O3—Kii −83.43 (18)
B3—K—Zn—Znv 56.77 (6) O1vii—B1—O3—Kii 19.24 (17)
B2—K—Zn—Znv −69.52 (6) B1viii—B1—O3—Kii −31.5 (3)
O4i—K—Zn—Kiii 146.95 (4) Kix—B1—O3—Kii −145.3 (3)
O3ii—K—Zn—Kiii −73.59 (6) O5vi—B1—O3—K −137.1 (2)
O1iii—K—Zn—Kiii 1.37 (4) O1v—B1—O3—K −8.2 (4)
O6—K—Zn—Kiii −40.97 (4) O1vii—B1—O3—K 94.5 (3)
O5iv—K—Zn—Kiii 76.93 (6) B1viii—B1—O3—K 43.7 (4)
O6iii—K—Zn—Kiii 42.68 (4) Kii—B1—O3—K 75.3 (2)
O2—K—Zn—Kiii −91.82 (6) Kix—B1—O3—K −70.0 (4)
O4—K—Zn—Kiii 96.49 (6) O4i—K—O3—B2 10.06 (12)
B2i—K—Zn—Kiii 72.76 (7) O3ii—K—O3—B2 128.59 (13)
O3—K—Zn—Kiii −168.40 (3) O1iii—K—O3—B2 98.98 (15)
B3—K—Zn—Kiii −67.10 (6) O6—K—O3—B2 −150.28 (12)
B2—K—Zn—Kiii 166.62 (5) O5iv—K—O3—B2 42.17 (13)
O4i—K—Zn—Ki 19.17 (4) O6iii—K—O3—B2 −61.35 (14)
O3ii—K—Zn—Ki 158.63 (6) O2—K—O3—B2 −133.21 (13)
O1iii—K—Zn—Ki −126.42 (5) O4—K—O3—B2 −63.66 (13)
O6—K—Zn—Ki −168.76 (4) B2i—K—O3—B2 −51.73 (16)
O5iv—K—Zn—Ki −50.85 (5) B3—K—O3—B2 −148.62 (13)
O6iii—K—Zn—Ki −85.10 (4) O4i—K—O3—B1 161.0 (3)
O2—K—Zn—Ki 140.40 (6) O3ii—K—O3—B1 −80.5 (3)
O4—K—Zn—Ki −31.29 (6) O1iii—K—O3—B1 −110.1 (3)
B2i—K—Zn—Ki −55.02 (6) O6—K—O3—B1 0.7 (3)
O3—K—Zn—Ki 63.81 (4) O5iv—K—O3—B1 −166.9 (3)
B3—K—Zn—Ki 165.12 (6) O6iii—K—O3—B1 89.6 (3)
B2—K—Zn—Ki 38.83 (5) O2—K—O3—B1 17.7 (3)
O3ii—K—B2—O4i 101.89 (15) O4—K—O3—B1 87.3 (3)
O1iii—K—B2—O4i 39.7 (2) B2i—K—O3—B1 99.2 (3)
O6—K—B2—O4i −158.69 (12) B3—K—O3—B1 2.3 (3)
O5iv—K—B2—O4i 18.26 (15) B2—K—O3—B1 150.9 (3)
O6iii—K—B2—O4i −67.98 (15) O4i—K—O3—Kii −118.53 (7)
O2—K—B2—O4i −155.45 (14) O3ii—K—O3—Kii 0.0
O4—K—B2—O4i −88.37 (15) O1iii—K—O3—Kii −29.61 (10)
B2i—K—B2—O4i −69.11 (14) O6—K—O3—Kii 81.13 (6)
O3—K—B2—O4i 160.9 (2) O5iv—K—O3—Kii −86.42 (6)
B3—K—B2—O4i −165.01 (14) O6iii—K—O3—Kii 170.06 (5)
O4i—K—B2—O3 −160.9 (2) O2—K—O3—Kii 98.19 (5)
O3ii—K—B2—O3 −59.00 (14) O4—K—O3—Kii 167.74 (5)
O1iii—K—B2—O3 −121.16 (12) B2i—K—O3—Kii 179.68 (6)
O6—K—B2—O3 40.42 (16) B3—K—O3—Kii 82.79 (6)
O5iv—K—B2—O3 −142.63 (12) B2—K—O3—Kii −128.59 (13)
O6iii—K—B2—O3 131.12 (12) O1—Zn—O4—B2i −37.9 (2)
O2—K—B2—O3 43.66 (12) O2v—Zn—O4—B2i −179.73 (18)
O4—K—B2—O3 110.73 (13) O2—Zn—O4—B2i 81.2 (2)
B2i—K—B2—O3 129.99 (15) Znv—Zn—O4—B2i 129.37 (18)
B3—K—B2—O3 34.10 (14) K—Zn—O4—B2i 73.35 (19)
O4i—K—B2—O6vi 74.8 (4) Kiii—Zn—O4—B2i −1.03 (19)
O3ii—K—B2—O6vi 176.7 (4) Ki—Zn—O4—B2i −177.6 (3)
O1iii—K—B2—O6vi 114.5 (4) O1—Zn—O4—Ki 139.70 (9)
O6—K—B2—O6vi −83.9 (4) O2v—Zn—O4—Ki −2.11 (12)
O5iv—K—B2—O6vi 93.0 (4) O2—Zn—O4—Ki −101.18 (10)
O6iii—K—B2—O6vi 6.8 (4) Znv—Zn—O4—Ki −53.01 (11)
O2—K—B2—O6vi −80.7 (4) K—Zn—O4—Ki −109.03 (10)
O4—K—B2—O6vi −13.6 (4) Kiii—Zn—O4—Ki 176.59 (8)
B2i—K—B2—O6vi 5.7 (4) O1—Zn—O4—K −111.28 (6)
O3—K—B2—O6vi −124.3 (5) O2v—Zn—O4—K 106.92 (7)
B3—K—B2—O6vi −90.2 (4) O2—Zn—O4—K 7.84 (7)
O4i—K—B2—Ki 69.11 (14) Znv—Zn—O4—K 56.02 (6)
O3ii—K—B2—Ki 171.01 (5) Kiii—Zn—O4—K −74.39 (5)
O1iii—K—B2—Ki 108.85 (10) Ki—Zn—O4—K 109.03 (10)
O6—K—B2—Ki −89.57 (9) O4i—K—O4—B2i 103.40 (14)
O5iv—K—B2—Ki 87.38 (7) O3ii—K—O4—B2i −98.0 (2)
O6iii—K—B2—Ki 1.13 (7) O1iii—K—O4—B2i −18.42 (14)
O2—K—B2—Ki −86.33 (7) O6—K—O4—B2i −92.60 (13)
O4—K—B2—Ki −19.26 (4) O5iv—K—O4—B2i 36.17 (14)
B2i—K—B2—Ki 0.0 O6iii—K—O4—B2i −26.49 (12)
O3—K—B2—Ki −129.99 (15) O2—K—O4—B2i −135.79 (14)
B3—K—B2—Ki −95.89 (8) O3—K—O4—B2i 151.02 (13)
O4i—K—B3—O2 15.32 (17) B3—K—O4—B2i −117.42 (14)
O3ii—K—B3—O2 139.97 (14) B2—K—O4—B2i 127.65 (12)
O1iii—K—B3—O2 −170.63 (12) O4i—K—O4—Zn −126.01 (9)
O6—K—B3—O2 −146.5 (2) O3ii—K—O4—Zn 32.6 (2)
O5iv—K—B3—O2 −163.33 (11) O1iii—K—O4—Zn 112.17 (6)
O6iii—K—B3—O2 −91.29 (13) O6—K—O4—Zn 37.99 (6)
O4—K—B3—O2 −44.29 (13) O5iv—K—O4—Zn 166.76 (5)
B2i—K—B3—O2 −66.12 (14) O6iii—K—O4—Zn 104.10 (8)
O3—K—B3—O2 36.98 (13) O2—K—O4—Zn −5.20 (5)
B2—K—B3—O2 23.39 (15) B2i—K—O4—Zn 130.59 (15)
O4i—K—B3—O5 −97.2 (3) O3—K—O4—Zn −78.39 (6)
O3ii—K—B3—O5 27.5 (3) B3—K—O4—Zn 13.17 (6)
O1iii—K—B3—O5 76.9 (3) B2—K—O4—Zn −101.76 (8)
O6—K—B3—O5 101.0 (3) O4i—K—O4—Ki 0.0
O5iv—K—B3—O5 84.2 (3) O3ii—K—O4—Ki 158.64 (19)
O6iii—K—B3—O5 156.2 (3) O1iii—K—O4—Ki −121.82 (6)
O2—K—B3—O5 −112.5 (4) O6—K—O4—Ki 164.00 (6)
O4—K—B3—O5 −156.8 (3) O5iv—K—O4—Ki −67.23 (7)
B2i—K—B3—O5 −178.6 (3) O6iii—K—O4—Ki −129.90 (8)
O3—K—B3—O5 −75.5 (3) O2—K—O4—Ki 120.81 (7)
B2—K—B3—O5 −89.1 (3) B2i—K—O4—Ki −103.40 (14)
O4i—K—B3—O6 161.80 (11) O3—K—O4—Ki 47.62 (5)
O3ii—K—B3—O6 −73.54 (13) B3—K—O4—Ki 139.18 (7)
O1iii—K—B3—O6 −24.14 (13) B2—K—O4—Ki 24.25 (6)
O5iv—K—B3—O6 −16.8 (2) O2—B3—O5—B1xi −171.9 (2)
O6iii—K—B3—O6 55.19 (13) O6—B3—O5—B1xi 6.6 (3)
O2—K—B3—O6 146.5 (2) K—B3—O5—B1xi −76.4 (4)
O4—K—B3—O6 102.19 (13) O2—B3—O5—Kxii 40.2 (3)
B2i—K—B3—O6 80.36 (14) O6—B3—O5—Kxii −141.28 (16)
O3—K—B3—O6 −176.54 (12) K—B3—O5—Kxii 135.7 (2)
B2—K—B3—O6 169.87 (12) O2—B3—O6—B2xi 177.2 (2)
O4—Zn—O1—B1v −173.34 (17) O5—B3—O6—B2xi −1.4 (3)
O2v—Zn—O1—B1v −32.6 (2) K—B3—O6—B2xi 142.9 (2)
O2—Zn—O1—B1v 59.85 (19) O2—B3—O6—K 34.3 (2)
Znv—Zn—O1—B1v 18.13 (19) O5—B3—O6—K −144.30 (19)
K—Zn—O1—B1v 119.73 (17) O2—B3—O6—Kiii −76.7 (2)
Kiii—Zn—O1—B1v 122.1 (2) O5—B3—O6—Kiii 104.7 (2)
Ki—Zn—O1—B1v −146.02 (16) K—B3—O6—Kiii −111.02 (10)
O4—Zn—O1—B1x −48.07 (17) O4i—K—O6—B3 −35.0 (2)
O2v—Zn—O1—B1x 92.65 (16) O3ii—K—O6—B3 101.87 (13)
O2—Zn—O1—B1x −174.87 (15) O1iii—K—O6—B3 155.58 (13)
Znv—Zn—O1—B1x 143.40 (14) O5iv—K—O6—B3 169.98 (12)
K—Zn—O1—B1x −115.00 (15) O6iii—K—O6—B3 −121.12 (14)
Kiii—Zn—O1—B1x −112.59 (17) O2—K—O6—B3 −18.14 (12)
Ki—Zn—O1—B1x −20.75 (18) O4—K—O6—B3 −76.92 (13)
O4—Zn—O1—Kiii 64.52 (8) B2i—K—O6—B3 −101.49 (14)
O2v—Zn—O1—Kiii −154.77 (6) O3—K—O6—B3 3.86 (14)
O2—Zn—O1—Kiii −62.29 (8) B2—K—O6—B3 −13.77 (16)
Znv—Zn—O1—Kiii −104.01 (6) O4i—K—O6—B2xi −172.34 (18)
K—Zn—O1—Kiii −2.41 (8) O3ii—K—O6—B2xi −35.48 (19)
Ki—Zn—O1—Kiii 91.84 (7) O1iii—K—O6—B2xi 18.23 (19)
O5—B3—O2—Znv 6.8 (3) O5iv—K—O6—B2xi 32.6 (2)
O6—B3—O2—Znv −171.72 (14) O6iii—K—O6—B2xi 101.5 (2)
K—B3—O2—Znv −138.72 (16) O2—K—O6—B2xi −155.5 (2)
O5—B3—O2—Zn −127.1 (2) O4—K—O6—B2xi 145.74 (19)
O6—B3—O2—Zn 54.3 (3) B2i—K—O6—B2xi 121.17 (17)
K—B3—O2—Zn 87.33 (13) O3—K—O6—B2xi −133.48 (18)
O5—B3—O2—K 145.6 (2) B3—K—O6—B2xi −137.3 (3)
O6—B3—O2—K −33.0 (2) B2—K—O6—B2xi −151.1 (2)
O4—Zn—O2—B3 −96.81 (18) O4i—K—O6—Kiii 86.13 (14)
O1—Zn—O2—B3 24.73 (18) O3ii—K—O6—Kiii −137.01 (6)
O2v—Zn—O2—B3 144.6 (2) O1iii—K—O6—Kiii −83.30 (6)
Znv—Zn—O2—B3 144.6 (2) O5iv—K—O6—Kiii −68.90 (8)
K—Zn—O2—B3 −88.59 (17) O6iii—K—O6—Kiii 0.0
Kiii—Zn—O2—B3 −11.57 (16) O2—K—O6—Kiii 102.98 (8)
Ki—Zn—O2—B3 −133.34 (16) O4—K—O6—Kiii 44.20 (5)
O4—Zn—O2—Znv 118.60 (7) B2i—K—O6—Kiii 19.63 (6)
O1—Zn—O2—Znv −119.85 (7) O3—K—O6—Kiii 124.98 (6)
O2v—Zn—O2—Znv 0.0 B3—K—O6—Kiii 121.12 (14)
K—Zn—O2—Znv 126.83 (7) B2—K—O6—Kiii 107.35 (9)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x, y, z+1; (v) −x+1, −y+1, −z; (vi) x, y+1, z; (vii) x−1, y+1, z; (viii) −x, −y+2, −z; (ix) x, y+1, z−1; (x) x+1, y−1, z; (xi) x, y−1, z; (xii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2092).

References

  1. Chen, X. L., Cai, G. M., Wan, W. Y., He, M., Jin, S. F. & Wang, S. C. (2010). Angew Chem. Int. Ed. DOI:10.1002/anie.200907075.
  2. Chen, D.-G., Cheng, W.-D., Wu, D.-S., Zhang, H., Zhang, Y.-C., Gong, Y.-J. & Kan, Z.-G. (2005). Solid State Sci.7, 179–188.
  3. Dowty, E. (1998). ATOMS Shape Software, Kingsport, Tennessee, USA.
  4. Emme, H. & Huppertz, H. (2003). Chem. Eur. J.9, 3623–3633. [DOI] [PubMed]
  5. Emme, H. & Huppertz, H. (2004). Z. Anorg. Allg. Chem.630, 2450–2457.
  6. Emme, H. & Huppertz, H. (2005). Acta Cryst. C61, i29–i31. [DOI] [PubMed]
  7. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  8. Huppertz, H. (2003). Z. Naturforsch. Teil B, 58, 278–290.
  9. Huppertz, H. & Emme, H. (2004). J. Phys. Condens. Matter, 16, S1283–S1290.
  10. Huppertz, H. & von der Eltz, B. (2002). J. Am. Chem. Soc.124, 9376–9377. [DOI] [PubMed]
  11. Knyrim, J. S., Roessner, F., Jakob, S., Johrendt, D., Kinski, I., Glaum, R. & Huppertz, H. (2007). Angew. Chem. Int. Ed.46, 9097–9100. [DOI] [PubMed]
  12. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Smith, R. W., Luce, J. L. & Keszler, D. A. (1992). Inorg. Chem.31, 4679–4682.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015175/mg2092sup1.cif

e-66-00i45-sup1.cif (33.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015175/mg2092Isup2.hkl

e-66-00i45-Isup2.hkl (60.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES