Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1241. doi: 10.1107/S1600536810015576

4-Carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide

Hriday Bera a, Anton V Dolzhenko a,*, Geok Kheng Tan b, Lip Lin Koh b, Wai Keung Chui a
PMCID: PMC2979162  PMID: 21579260

Abstract

The mol­ecular structure of the title compound, C13H18N4O3S, (systematic name: ethyl N-{2-[4-(dimethyl­amino)benzo­yl]hydrazinethio­carbon­yl}carbamate) is stabilized by intra­molecular N—H⋯O=C hydrogen bonding arranged in an S(6) graph-set motif. In the crystal, inversion dimers connected via inter­molecular N—H⋯S=C hydrogen bonds [R 2 2(8) graph-set motif] form sheets parallel to the (Inline graphic21) plane. Dimers are also formed by the mol­ecules via weak inter­molecular N—H⋯S=C hydrogen bonds [R 2 2(10) graph-set motif] connecting the sheets.

Related literature

For examples of bioactive 1,4-diacyl substituted thio­semi­carbazides and their metal complexes, see: Angelusiu et al. (2009); Cunha et al. (2007); Qandil et al. (2006). For 4-aroyl-1-[4-(N,N-dimethyl­amino)benzo­yl]thio­semicarbazides as high affinity anion receptors, see: Liu & Jiang (2008). For the structures of related carbethoxy­thio­ureas, see: Dolzhenko et al. (2010a,b ). For the structures of related 1,4-diacyl thio­semicarbazides, see: Ali et al. (2004); Xue et al. (2006); Yamin & Yusof (2003); Yusof et al. (2003). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).graphic file with name e-66-o1241-scheme1.jpg

Experimental

Crystal data

  • C13H18N4O3S

  • M r = 310.37

  • Triclinic, Inline graphic

  • a = 7.876 (4) Å

  • b = 8.184 (4) Å

  • c = 12.086 (6) Å

  • α = 82.290 (12)°

  • β = 74.769 (11)°

  • γ = 84.469 (11)°

  • V = 743.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.24 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.946, T max = 0.982

  • 5201 measured reflections

  • 3379 independent reflections

  • 2839 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081

  • wR(F 2) = 0.218

  • S = 1.18

  • 3379 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015576/ds2029sup1.cif

e-66-o1241-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015576/ds2029Isup2.hkl

e-66-o1241-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.82 (6) 2.53 (6) 3.342 (3) 173 (5)
N3—H3N⋯S1ii 0.80 (4) 2.64 (5) 3.385 (4) 156 (4)
N2—H2N⋯O2 0.86 (5) 2.02 (5) 2.653 (4) 130 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

supplementary crystallographic information

Comment

1,4-Diacyl substituted thiosemicarbazides and their metal complexes have been demonstrated to possess a potent antimicrobial activity (Angelusiu et al., 2009; Cunha et al., 2007; Qandil et al., 2006). In continuation of our structural investigations of the carbethoxythioureas derivatives (Dolzhenko et al., 2010a,b), we report herein molecular and crystal structure of 4-carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide (Figure 1 and 2). The compound is a structural analogue of 4-aroyl-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazides reported recently as high affinity anion receptors (Liu & Jiang, 2008).

4-Carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide was prepared by nucleophilic addition of 4-(N,N-dimethylamino)benzhydrazide to ethoxycarbonyl isothiocyanate in DMF at room temperature (Figure 3).

The molecule of 4-carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide adopts similar to the previously reported (Ali et al., 2004; Xue et al., 2006; Yamin & Yusof, 2003;. Yusof et al., 2003) for the related 1,4-diacyl substituted thiosemicarbazides configuration with the thiocarbonyl group pointed to the side opposite of the carbonyl groups. In the thiourea fragment, (E)- and (Z)-configurations observed across the C4—N1 and C4—N2 bonds, respectively. This configuration is stabilized by the strong intramolecular hydrogen bonding between N(2)—H and O2═C3 arranged in the S(6) graph-set motif (Bernstein et al., 1995).

The thiourea C4—N2 bond is significantly shorter (1.315 (5) Å) than other C—N bonds of the molecule. The planarity of the molecule is affected by some twisting at the hydrazine N2—N3 fragment [—C4—N2—N3—C6— torsion angle is 166.5 (33)°].

In the crystal, the molecules form sheets parallel to the (121) plane (Figure 2). In the sheets, atom N1 of one molecule is involved in a intermolecular N(1)—H···S═C interaction with the thiocarbonyl atom S1 of adjacent molecule making pair with the R22(8) graph-set motif. Dimmers are also formed by molecules via week intermolecular N(3)—H···S═C hydrogen bonds arranged in R22(10)graph-set motifs connecting the sheets between each other.

Experimental

To a fine suspension of 4-(N,N-dimethylamino)benzhydrazide in (0.54 g, 3.0 mmol) in anhydrous DMF (4 ml), ethoxycarbonyl isothiocyanate (0.37 ml, 3.3 mmol) was added. After stirring the mixture for 5 h at ambient temperature, cold water (50 ml) was added. The precipitated product was filtered, washed with cold water and recrystallized from toluene. Yield 0.83 g (89%), m.p. 201 °C (PhMe).

1H NMR (300 MHz, DMSO-d6): δ 1.26 (t, 3H, CH3, J 7.2 Hz), 2.99 (s, 6H, N(CH3)2), 4.21 (q, 2H, CH2, J 7.2 Hz), 6.74 (d, 2H, Ar, J 8.7 Hz), 7.78 (d, 2H, Ar, J 8.7 Hz), 10.56 (s, 1H, NH), 11.34 (s, 1H, NH), 11.41 (s, 1H, NH).

13C NMR (75 MHz, DMSO-d6): δ 15.2, 40.1 (2 C), 62.7, 111.3 (2 C), 118.6, 129.6 (2 C), 153.1, 153.8, 165.0, 179.8.

Refinement

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.95 Å for Caryl—H, 0.99 Å for methylenic protons and 0.98 Å for methyl groups; Uiso(H) = 1.2Ueq(Caryl), Uiso(H) = 1.2Ueq(Cmethylenic) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of 4-carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing in the cell (view along axis c)

Fig. 3.

Fig. 3.

Synthesis of 4-carbethoxy-1-[4-(N,N-dimethylamino)benzoyl]thiosemicarbazide

Crystal data

C13H18N4O3S Z = 2
Mr = 310.37 F(000) = 328
Triclinic, P1 Dx = 1.387 Mg m3
Hall symbol: -P 1 Melting point: 474 K
a = 7.876 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.184 (4) Å Cell parameters from 644 reflections
c = 12.086 (6) Å θ = 2.5–27.4°
α = 82.290 (12)° µ = 0.23 mm1
β = 74.769 (11)° T = 100 K
γ = 84.469 (11)° Rod, colourless
V = 743.3 (7) Å3 0.24 × 0.10 × 0.08 mm

Data collection

Bruker SMART APEX CCD diffractometer 3379 independent reflections
Radiation source: fine-focus sealed tube 2839 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −9→10
Tmin = 0.946, Tmax = 0.982 k = −10→10
5201 measured reflections l = −12→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218 H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0987P)2 + 1.3625P] where P = (Fo2 + 2Fc2)/3
3379 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.84 e Å3
0 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25106 (11) 0.89905 (11) 1.00357 (7) 0.0123 (3)
O1 0.6976 (3) 1.2062 (3) 0.7276 (2) 0.0147 (6)
O2 0.4814 (3) 1.1658 (3) 0.6437 (2) 0.0152 (6)
O3 0.1155 (3) 0.9455 (3) 0.6162 (2) 0.0146 (6)
N1 0.4741 (4) 1.0685 (4) 0.8327 (3) 0.0106 (6)
H1N 0.534 (7) 1.072 (7) 0.878 (5) 0.037 (15)*
N2 0.2296 (4) 0.9931 (4) 0.7882 (3) 0.0123 (6)
H2N 0.262 (6) 1.043 (6) 0.719 (4) 0.017 (11)*
N3 0.0781 (4) 0.9079 (4) 0.8084 (3) 0.0138 (7)
H3N 0.005 (6) 0.926 (5) 0.866 (4) 0.011 (10)*
N4 −0.6011 (4) 0.5754 (4) 0.7533 (3) 0.0218 (8)
C1 0.9562 (5) 1.3511 (5) 0.6447 (3) 0.0151 (8)
H1A 0.9156 1.4354 0.6979 0.023*
H1B 1.0341 1.3997 0.5730 0.023*
H1C 1.0207 1.2596 0.6803 0.023*
C2 0.7995 (5) 1.2877 (5) 0.6182 (3) 0.0138 (7)
H2A 0.7274 1.3800 0.5879 0.017*
H2B 0.8385 1.2083 0.5601 0.017*
C3 0.5467 (5) 1.1491 (4) 0.7259 (3) 0.0109 (7)
C4 0.3184 (4) 0.9900 (4) 0.8667 (3) 0.0119 (7)
C6 0.0248 (4) 0.8950 (4) 0.7109 (3) 0.0109 (7)
C7 −0.1384 (4) 0.8092 (4) 0.7270 (3) 0.0108 (7)
C8 −0.2115 (5) 0.8174 (4) 0.6328 (3) 0.0122 (7)
H8 −0.1558 0.8778 0.5619 0.015*
C9 −0.3619 (5) 0.7403 (5) 0.6401 (3) 0.0137 (7)
H9 −0.4079 0.7473 0.5743 0.016*
C10 −0.4491 (5) 0.6506 (4) 0.7447 (3) 0.0127 (7)
C11 −0.3746 (5) 0.6417 (5) 0.8393 (3) 0.0145 (7)
H11 −0.4295 0.5811 0.9104 0.017*
C12 −0.2221 (5) 0.7201 (5) 0.8304 (3) 0.0124 (7)
H12 −0.1742 0.7129 0.8955 0.015*
C13 −0.6896 (5) 0.4845 (5) 0.8622 (4) 0.0228 (9)
H13A −0.6084 0.3962 0.8853 0.034*
H13B −0.7933 0.4363 0.8527 0.034*
H13C −0.7266 0.5600 0.9219 0.034*
C14 −0.6706 (5) 0.5756 (5) 0.6535 (3) 0.0172 (8)
H14A −0.6649 0.6861 0.6103 0.026*
H14B −0.7935 0.5456 0.6789 0.026*
H14C −0.6004 0.4953 0.6037 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0110 (4) 0.0190 (5) 0.0080 (4) −0.0039 (3) −0.0034 (3) −0.0013 (3)
O1 0.0134 (12) 0.0172 (13) 0.0144 (13) −0.0080 (10) −0.0040 (10) 0.0009 (10)
O2 0.0169 (13) 0.0166 (13) 0.0141 (13) −0.0069 (10) −0.0066 (10) 0.0008 (10)
O3 0.0172 (13) 0.0185 (13) 0.0092 (12) −0.0073 (10) −0.0032 (10) −0.0018 (10)
N1 0.0119 (14) 0.0123 (14) 0.0092 (14) −0.0051 (11) −0.0045 (12) −0.0004 (11)
N2 0.0122 (14) 0.0179 (15) 0.0072 (14) −0.0068 (12) −0.0028 (11) 0.0024 (12)
N3 0.0067 (13) 0.0220 (17) 0.0128 (16) −0.0060 (12) −0.0001 (12) −0.0032 (13)
N4 0.0201 (17) 0.0303 (19) 0.0176 (17) −0.0149 (15) −0.0078 (14) 0.0034 (14)
C1 0.0134 (16) 0.0133 (17) 0.0183 (19) −0.0044 (13) −0.0034 (14) 0.0004 (14)
C2 0.0167 (17) 0.0143 (17) 0.0107 (17) −0.0068 (14) −0.0019 (14) −0.0010 (13)
C3 0.0129 (16) 0.0051 (15) 0.0149 (17) −0.0016 (12) −0.0018 (13) −0.0045 (12)
C4 0.0110 (16) 0.0113 (16) 0.0133 (17) 0.0005 (13) −0.0031 (13) −0.0024 (13)
C6 0.0109 (15) 0.0101 (16) 0.0122 (17) −0.0015 (13) −0.0016 (13) −0.0050 (13)
C7 0.0091 (15) 0.0122 (16) 0.0104 (16) −0.0028 (13) −0.0004 (13) −0.0012 (13)
C8 0.0130 (16) 0.0089 (16) 0.0142 (17) 0.0012 (13) −0.0012 (13) −0.0048 (13)
C9 0.0164 (17) 0.0180 (18) 0.0108 (17) −0.0025 (14) −0.0078 (14) −0.0064 (14)
C10 0.0129 (16) 0.0119 (16) 0.0144 (18) −0.0030 (13) −0.0040 (14) −0.0025 (13)
C11 0.0159 (17) 0.0163 (18) 0.0106 (17) −0.0069 (14) −0.0024 (14) 0.0028 (14)
C12 0.0111 (16) 0.0180 (18) 0.0096 (16) −0.0035 (13) −0.0049 (13) −0.0004 (13)
C13 0.0180 (19) 0.025 (2) 0.026 (2) −0.0121 (16) −0.0032 (16) −0.0026 (17)
C14 0.0189 (18) 0.0167 (18) 0.021 (2) −0.0042 (14) −0.0125 (15) −0.0029 (15)

Geometric parameters (Å, °)

S1—C4 1.690 (4) C2—H2A 0.9900
O1—C3 1.325 (4) C2—H2B 0.9900
O1—C2 1.465 (4) C6—C7 1.479 (5)
O2—C3 1.219 (4) C7—C12 1.394 (5)
O3—C6 1.221 (4) C7—C8 1.396 (5)
N1—C3 1.374 (5) C8—C9 1.372 (5)
N1—C4 1.379 (4) C8—H8 0.9500
N1—H1N 0.82 (6) C9—C10 1.414 (5)
N2—C4 1.315 (5) C9—H9 0.9500
N2—N3 1.390 (4) C10—C11 1.407 (5)
N2—H2N 0.86 (5) C11—C12 1.389 (5)
N3—C6 1.371 (5) C11—H11 0.9500
N3—H3N 0.80 (4) C12—H12 0.9500
N4—C10 1.372 (5) C13—H13A 0.9800
N4—C14 1.450 (5) C13—H13B 0.9800
N4—C13 1.458 (5) C13—H13C 0.9800
C1—C2 1.507 (5) C14—H14A 0.9800
C1—H1A 0.9800 C14—H14B 0.9800
C1—H1B 0.9800 C14—H14C 0.9800
C1—H1C 0.9800
C3—O1—C2 116.3 (3) O3—C6—C7 123.2 (3)
C3—N1—C4 127.1 (3) N3—C6—C7 116.7 (3)
C3—N1—H1N 112 (4) C12—C7—C8 118.4 (3)
C4—N1—H1N 121 (4) C12—C7—C6 123.7 (3)
C4—N2—N3 122.1 (3) C8—C7—C6 117.9 (3)
C4—N2—H2N 124 (3) C9—C8—C7 121.6 (3)
N3—N2—H2N 114 (3) C9—C8—H8 119.2
C6—N3—N2 114.1 (3) C7—C8—H8 119.2
C6—N3—H3N 119 (3) C8—C9—C10 120.6 (3)
N2—N3—H3N 114 (3) C8—C9—H9 119.7
C10—N4—C14 121.0 (3) C10—C9—H9 119.7
C10—N4—C13 120.2 (3) N4—C10—C11 121.3 (3)
C14—N4—C13 118.7 (3) N4—C10—C9 121.0 (3)
C2—C1—H1A 109.5 C11—C10—C9 117.7 (3)
C2—C1—H1B 109.5 C12—C11—C10 121.0 (3)
H1A—C1—H1B 109.5 C12—C11—H11 119.5
C2—C1—H1C 109.5 C10—C11—H11 119.5
H1A—C1—H1C 109.5 C11—C12—C7 120.7 (3)
H1B—C1—H1C 109.5 C11—C12—H12 119.7
O1—C2—C1 106.0 (3) C7—C12—H12 119.7
O1—C2—H2A 110.5 N4—C13—H13A 109.5
C1—C2—H2A 110.5 N4—C13—H13B 109.5
O1—C2—H2B 110.5 H13A—C13—H13B 109.5
C1—C2—H2B 110.5 N4—C13—H13C 109.5
H2A—C2—H2B 108.7 H13A—C13—H13C 109.5
O2—C3—O1 126.1 (3) H13B—C13—H13C 109.5
O2—C3—N1 125.2 (3) N4—C14—H14A 109.5
O1—C3—N1 108.7 (3) N4—C14—H14B 109.5
N2—C4—N1 116.4 (3) H14A—C14—H14B 109.5
N2—C4—S1 123.9 (3) N4—C14—H14C 109.5
N1—C4—S1 119.7 (3) H14A—C14—H14C 109.5
O3—C6—N3 120.0 (3) H14B—C14—H14C 109.5
C4—N2—N3—C6 −166.5 (3) N3—C6—C7—C8 169.8 (3)
C3—O1—C2—C1 176.1 (3) C12—C7—C8—C9 0.0 (5)
C2—O1—C3—O2 −4.1 (5) C6—C7—C8—C9 179.5 (3)
C2—O1—C3—N1 176.4 (3) C7—C8—C9—C10 0.6 (5)
C4—N1—C3—O2 1.2 (6) C14—N4—C10—C11 −175.8 (3)
C4—N1—C3—O1 −179.3 (3) C13—N4—C10—C11 0.3 (6)
N3—N2—C4—N1 174.8 (3) C14—N4—C10—C9 4.3 (6)
N3—N2—C4—S1 −6.0 (5) C13—N4—C10—C9 −179.5 (4)
C3—N1—C4—N2 −0.2 (5) C8—C9—C10—N4 178.9 (3)
C3—N1—C4—S1 −179.4 (3) C8—C9—C10—C11 −0.9 (5)
N2—N3—C6—O3 5.2 (5) N4—C10—C11—C12 −179.1 (4)
N2—N3—C6—C7 −178.5 (3) C9—C10—C11—C12 0.8 (5)
O3—C6—C7—C12 165.6 (4) C10—C11—C12—C7 −0.3 (6)
N3—C6—C7—C12 −10.6 (5) C8—C7—C12—C11 −0.1 (5)
O3—C6—C7—C8 −13.9 (5) C6—C7—C12—C11 −179.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···S1i 0.82 (6) 2.53 (6) 3.342 (3) 173 (5)
N3—H3N···S1ii 0.80 (4) 2.64 (5) 3.385 (4) 156 (4)
N2—H2N···O2 0.86 (5) 2.02 (5) 2.653 (4) 130 (4)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2029).

References

  1. Ali, H., Yusof, M. S., Khamis, N. A., Mardi, A. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1656–o1658.
  2. Angelusiu, M. V., Almajan, G. L., Rosu, T., Negoiu, M., Almajan, E.-R. & Roy, J. (2009). Eur. J. Med. Chem.44, 3323–3329. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2001). SMART and SAINT Bruker AXS GmbH, Karlsruhe, Germany.
  5. Cunha, S., Macedo, F. C. Jr, Costa, G. A. N., Rodrigues, M. T. Jr, Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sa, F. P. (2007). Monatsh. Chem.138, 511–516.
  6. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010a). Acta Cryst. E66, o425. [DOI] [PMC free article] [PubMed]
  7. Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010b). Acta Cryst. E66, o549–o550. [DOI] [PMC free article] [PubMed]
  8. Liu, W.-X. & Jiang, Y.-B. (2008). J. Org. Chem.73, 1124-1127. [DOI] [PubMed]
  9. Qandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta Pharm. Sci.48, 95–107.
  10. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Xue, S.-J., Bian, W.-D., Wang, Q.-D. & Chai, A. (2006). Acta Cryst. E62, o4842–o4843.
  13. Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o124–o126.
  14. Yusof, M. S. M., Yamin, B. M. & Shamsuddin, M. (2003). Acta Cryst. E59, o810–o811.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015576/ds2029sup1.cif

e-66-o1241-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015576/ds2029Isup2.hkl

e-66-o1241-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES