Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):m508. doi: 10.1107/S1600536810011712

Dichlorido{N,N-dimethyl-N′-[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine-κ3 N,N′,N′′}copper(II)

Muhammad Saleh Salga a, Hamid Khaledi a,*, Hapipah Mohd Ali a, Rustam Puteh b
PMCID: PMC2979170  PMID: 21579006

Abstract

In the title compound, [CuCl2(C11H17N3)], the CuII ion is five-coordinated with a distorted square-pyramidal configuration. The three N atoms of the Schiff base ligand and one Cl atom are located in the basal plane, whereas the other Cl atom is apically positioned.

Related literature

For the crystal structures of similar copper (II) complexes, see: Wang et al. (2009); Yuan & Zhang (2005); Zhang et al. (2009). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984).graphic file with name e-66-0m508-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C11H17N3)]

  • M r = 325.72

  • Orthorhombic, Inline graphic

  • a = 9.81448 (12) Å

  • b = 9.90297 (13) Å

  • c = 14.21414 (18) Å

  • V = 1381.51 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.30 × 0.23 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.592, T max = 0.876

  • 10998 measured reflections

  • 2439 independent reflections

  • 2378 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017

  • wR(F 2) = 0.043

  • S = 1.03

  • 2439 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1022 Friedel pairs

  • Flack parameter: 0.010 (9)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011712/pv2266sup1.cif

e-66-0m508-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011712/pv2266Isup2.hkl

e-66-0m508-Isup2.hkl (119.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

supplementary crystallographic information

Comment

The title compound was obtained by the reaction of N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine with copper(II) chloride. In the molecule of the complex, the metal ion is penta-coordinated by the tridentate Schiff base ligand and two chloride atoms (Fig. 1). The geometry of the complex can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramidal geometry τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison et al.,1984). The two largest angels in the title compound are 158.45 (6)° (N1—Cu—N3) and 154.98 (5)° (N2—Cu—Cl2) which give a τ value of 0.058. This value indicates a slightly distorted square pyramidal geometry in which the three N atoms of the Schiff base ligand and one chloride atom occupy the basal positions and the other chloride atom is placed in the apical position.

Experimental

The Schiff base ligand was prepared via condensation reaction of N,N-dimethylethyldiamine (0.44 g, 5 mmol) and 2-acetylpyridine (0.61 g, 5 mmol) by refluxing in ethanol (50 ml) for 2 h. For synthesis of the title complex a mixture of the Schiff base ligand (0.57 g, 3 mmol) and copper (II) chloride dihydrate (0.51 g, 3 mmol) in ethanol (50 ml) was stirred at room temperature for half an hour. The solvent was then evaporated partially to yield the title complex as a green solid. Suitable crystals for X-ray crystallography were obtained upon slow evaporation of an ethanolic solution at room temperature.

Refinement

Hydrogen atoms were placed at calculated positions (C—H 0.95-0.98 Å), and were treated as riding on their parent atoms, with Uiso(H) set to 1.2-1.5 times Ueq(C). An absolute structure was established using anomalous dispersion effects; 1021 Friedel pairs were not merged.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot of the title compound at the 50% probability level.

Crystal data

[CuCl2(C11H17N3)] F(000) = 668
Mr = 325.72 Dx = 1.566 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7155 reflections
a = 9.81448 (12) Å θ = 2.5–30.4°
b = 9.90297 (13) Å µ = 1.95 mm1
c = 14.21414 (18) Å T = 100 K
V = 1381.51 (2) Å3 Block, green
Z = 4 0.30 × 0.23 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 2439 independent reflections
Radiation source: fine-focus sealed tube 2378 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→11
Tmin = 0.592, Tmax = 0.876 k = −11→11
10998 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017 H-atom parameters constrained
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0245P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2439 reflections Δρmax = 0.21 e Å3
157 parameters Δρmin = −0.20 e Å3
0 restraints Absolute structure: Flack (1983), 1022 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.010 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.80028 (2) 0.16329 (2) 0.099598 (15) 0.01175 (7)
Cl1 0.56577 (5) 0.08033 (5) 0.13120 (3) 0.01619 (11)
Cl2 0.92633 (5) 0.14346 (5) 0.23208 (3) 0.01790 (12)
N1 0.86920 (16) −0.00757 (17) 0.03434 (12) 0.0139 (4)
N2 0.76828 (16) 0.20963 (16) −0.03353 (11) 0.0124 (4)
N3 0.75938 (15) 0.36500 (16) 0.11931 (11) 0.0132 (4)
C1 0.9300 (2) −0.11396 (19) 0.07379 (15) 0.0169 (4)
H1 0.9448 −0.1136 0.1398 0.020*
C2 0.9722 (2) −0.2245 (2) 0.02225 (15) 0.0185 (5)
H2 1.0174 −0.2976 0.0522 0.022*
C3 0.9479 (2) −0.2274 (2) −0.07327 (15) 0.0200 (5)
H3 0.9737 −0.3036 −0.1098 0.024*
C4 0.8846 (2) −0.1161 (2) −0.11553 (15) 0.0175 (4)
H4 0.8666 −0.1155 −0.1812 0.021*
C5 0.84897 (19) −0.0075 (2) −0.06026 (13) 0.0131 (4)
C6 0.79321 (18) 0.12257 (18) −0.09696 (13) 0.0129 (4)
C7 0.7771 (2) 0.1485 (2) −0.20048 (13) 0.0200 (5)
H7A 0.6843 0.1805 −0.2132 0.030*
H7B 0.7935 0.0648 −0.2354 0.030*
H7C 0.8428 0.2173 −0.2204 0.030*
C8 0.71958 (19) 0.3470 (2) −0.05216 (13) 0.0139 (4)
H8A 0.6464 0.3460 −0.1001 0.017*
H8B 0.7949 0.4047 −0.0751 0.017*
C9 0.6657 (2) 0.3992 (2) 0.04119 (14) 0.0158 (4)
H9A 0.6548 0.4985 0.0377 0.019*
H9B 0.5751 0.3592 0.0536 0.019*
C10 0.6923 (2) 0.3973 (2) 0.20995 (13) 0.0195 (4)
H10A 0.7533 0.3737 0.2620 0.029*
H10B 0.6076 0.3456 0.2154 0.029*
H10C 0.6718 0.4941 0.2124 0.029*
C11 0.8874 (2) 0.4429 (2) 0.11176 (15) 0.0200 (5)
H11A 0.9314 0.4230 0.0514 0.030*
H11B 0.9486 0.4176 0.1633 0.030*
H11C 0.8671 0.5396 0.1155 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.01269 (12) 0.01237 (12) 0.01020 (12) 0.00077 (10) −0.00026 (10) 0.00045 (10)
Cl1 0.0134 (2) 0.0185 (3) 0.0166 (2) −0.0024 (2) −0.00053 (18) 0.0027 (2)
Cl2 0.0177 (2) 0.0229 (3) 0.0130 (2) 0.0021 (2) −0.00368 (19) 0.0008 (2)
N1 0.0115 (8) 0.0159 (9) 0.0143 (8) −0.0012 (7) 0.0026 (7) 0.0014 (7)
N2 0.0107 (9) 0.0133 (8) 0.0131 (8) 0.0003 (6) −0.0012 (7) 0.0033 (7)
N3 0.0137 (8) 0.0146 (8) 0.0114 (8) 0.0001 (6) 0.0009 (6) 0.0000 (7)
C1 0.0181 (10) 0.0146 (10) 0.0180 (11) −0.0018 (8) 0.0028 (9) 0.0036 (8)
C2 0.0203 (11) 0.0136 (11) 0.0217 (12) 0.0004 (8) 0.0034 (9) 0.0057 (9)
C3 0.0229 (11) 0.0144 (10) 0.0227 (11) −0.0009 (9) 0.0024 (9) −0.0051 (9)
C4 0.0170 (10) 0.0184 (11) 0.0171 (11) −0.0034 (8) −0.0009 (9) −0.0014 (9)
C5 0.0101 (10) 0.0148 (10) 0.0143 (10) −0.0034 (8) 0.0011 (8) −0.0012 (8)
C6 0.0093 (9) 0.0160 (9) 0.0134 (9) −0.0037 (7) −0.0012 (9) −0.0009 (8)
C7 0.0223 (11) 0.0237 (11) 0.0139 (10) 0.0061 (10) −0.0012 (8) −0.0014 (9)
C8 0.0145 (10) 0.0136 (10) 0.0137 (10) 0.0008 (9) −0.0019 (7) 0.0020 (8)
C9 0.0146 (10) 0.0144 (10) 0.0185 (10) 0.0017 (8) −0.0009 (8) 0.0019 (9)
C10 0.0272 (11) 0.0176 (10) 0.0136 (10) 0.0018 (10) 0.0029 (10) −0.0021 (8)
C11 0.0213 (11) 0.0183 (11) 0.0204 (12) −0.0064 (8) −0.0018 (9) −0.0015 (10)

Geometric parameters (Å, °)

Cu—N2 1.9723 (16) C4—C5 1.377 (3)
Cu—N1 2.0447 (17) C4—H4 0.9500
Cu—N3 2.0567 (16) C5—C6 1.494 (3)
Cu—Cl2 2.2617 (5) C6—C7 1.502 (3)
Cu—Cl1 2.4848 (5) C7—H7A 0.9800
N1—C1 1.334 (3) C7—H7B 0.9800
N1—C5 1.359 (2) C7—H7C 0.9800
N2—C6 1.271 (2) C8—C9 1.519 (3)
N2—C8 1.466 (3) C8—H8A 0.9900
N3—C11 1.478 (2) C8—H8B 0.9900
N3—C10 1.482 (2) C9—H9A 0.9900
N3—C9 1.481 (2) C9—H9B 0.9900
C1—C2 1.381 (3) C10—H10A 0.9800
C1—H1 0.9500 C10—H10B 0.9800
C2—C3 1.379 (3) C10—H10C 0.9800
C2—H2 0.9500 C11—H11A 0.9800
C3—C4 1.401 (3) C11—H11B 0.9800
C3—H3 0.9500 C11—H11C 0.9800
N2—Cu—N1 79.04 (7) N1—C5—C6 113.54 (17)
N2—Cu—N3 82.74 (6) C4—C5—C6 124.56 (17)
N1—Cu—N3 158.45 (6) N2—C6—C5 114.06 (16)
N2—Cu—Cl2 154.98 (5) N2—C6—C7 123.94 (18)
N1—Cu—Cl2 97.17 (5) C5—C6—C7 121.90 (16)
N3—Cu—Cl2 94.45 (4) C6—C7—H7A 109.5
N2—Cu—Cl1 95.91 (5) C6—C7—H7B 109.5
N1—Cu—Cl1 96.59 (5) H7A—C7—H7B 109.5
N3—Cu—Cl1 96.65 (4) C6—C7—H7C 109.5
Cl2—Cu—Cl1 109.113 (18) H7A—C7—H7C 109.5
C1—N1—C5 118.77 (18) H7B—C7—H7C 109.5
C1—N1—Cu 127.64 (14) N2—C8—C9 105.76 (15)
C5—N1—Cu 113.59 (13) N2—C8—H8A 110.6
C6—N2—C8 124.33 (16) C9—C8—H8A 110.6
C6—N2—Cu 119.47 (13) N2—C8—H8B 110.6
C8—N2—Cu 116.17 (12) C9—C8—H8B 110.6
C11—N3—C10 109.14 (15) H8A—C8—H8B 108.7
C11—N3—C9 110.72 (15) N3—C9—C8 111.17 (16)
C10—N3—C9 109.07 (15) N3—C9—H9A 109.4
C11—N3—Cu 109.33 (12) C8—C9—H9A 109.4
C10—N3—Cu 114.53 (12) N3—C9—H9B 109.4
C9—N3—Cu 103.96 (12) C8—C9—H9B 109.4
N1—C1—C2 122.50 (19) H9A—C9—H9B 108.0
N1—C1—H1 118.8 N3—C10—H10A 109.5
C2—C1—H1 118.8 N3—C10—H10B 109.5
C3—C2—C1 119.1 (2) H10A—C10—H10B 109.5
C3—C2—H2 120.4 N3—C10—H10C 109.5
C1—C2—H2 120.4 H10A—C10—H10C 109.5
C2—C3—C4 118.9 (2) H10B—C10—H10C 109.5
C2—C3—H3 120.6 N3—C11—H11A 109.5
C4—C3—H3 120.6 N3—C11—H11B 109.5
C5—C4—C3 118.86 (19) H11A—C11—H11B 109.5
C5—C4—H4 120.6 N3—C11—H11C 109.5
C3—C4—H4 120.6 H11A—C11—H11C 109.5
N1—C5—C4 121.81 (19) H11B—C11—H11C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2266).

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans pp. 1349–1356.
  2. Barbour, L. J. (2001). J. Supramol. Chem 1, 189–191.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, Q., Bi, C.-F., Wang, D.-Q. & Fan, Y.-H. (2009). Acta Cryst. E65, m439. [DOI] [PMC free article] [PubMed]
  8. Westrip, S. P. (2010). publCIF In preparation.
  9. Yuan, W.-B. & Zhang, Q. (2005). Acta Cryst. E61, m1883–m1884.
  10. Zhang, X.-Q., Li, C.-Y., Bian, H.-D., Yu, Q. & Liang, H. (2009). Acta Cryst. E65, m1610. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011712/pv2266sup1.cif

e-66-0m508-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011712/pv2266Isup2.hkl

e-66-0m508-Isup2.hkl (119.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES