Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1147–o1148. doi: 10.1107/S1600536810014145

2-Acetamido-N-benzyl-1,4-imino-1,2,4-tride­oxy-l-xylitol (N-benzyl-l-XYLNAc)

Sarah F Jenkinson a,*, Elizabeth V Crabtree a, Andreas F G Glawar a, Terry D Butters b, George W J Fleet a, David J Watkin c
PMCID: PMC2979175  PMID: 21579195

Abstract

X-ray crystallography defines the relative configuration at the three-stereogenic centres in the title compound N-benzyl-l-XYLNAc, C14H20N2O3. The five-membered pyrrolidine ring adopts an envelope conformation with the N atom lying out of the plane of the other four atoms. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into chains along [100]. The carbonyl group O atom acts as an acceptor for a bifurcated hydrogen bond. The absolute configuration is determined by the use of l-glucuronolactone as the starting material for the synthesis.

Related literature

For imino­sugars see: Asano et al. (2000); Watson et al. (2001). For the inhibition of hexosaminidases, see: Liu, Numa et al. (2004); Reese et al. (2007); Liu, Iqbal et al. (2004); Woynarowska et al. (1992). For piperidine hexosaminidase inhibitors, see: Tatsuta et al. (1997); Fleet et al. (1986, 1987); Steiner et al. (2009); Ho et al. (2010); For furan­ose hexosaminidase inhibitors, see: Usuki et al. (2009); Rountree et al. (2007, 2009); Boomkamp et al. (2010). For strategies for cancer treatment, see: Kato et al. (2010); Greco et al. (2009). For the use of glucuronolactone as a starting material for the synthesis of imino­sugars, see: Best, Wang et al. (2010); Best, Chairatana et al. (2010).graphic file with name e-66-o1147-scheme1.jpg

Experimental

Crystal data

  • C14H20N2O3

  • M r = 264.32

  • Orthorhombic, Inline graphic

  • a = 4.9731 (1) Å

  • b = 10.0145 (3) Å

  • c = 26.9297 (7) Å

  • V = 1341.18 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.50 × 0.15 × 0.05 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.77, T max = 1.00

  • 7494 measured reflections

  • 1788 independent reflections

  • 1471 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.130

  • S = 0.95

  • 1788 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK and Görbitz (1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014145/lh5029sup1.cif

e-66-o1147-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014145/lh5029Isup2.hkl

e-66-o1147-Isup2.hkl (89.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H151⋯O19i 0.85 1.94 2.790 (4) 173
N16—H161⋯O19ii 0.89 2.19 3.041 (4) 159
O1—H11⋯N4ii 0.85 2.29 3.121 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Iminosugars in which the oxygen of a sugar ring is replaced by nitrogen comprise a large family of inhibitors of carbohydrate processing enzymes (Asano et al., 2000; Watson et al., 2001). Specific inhibition of individual hexosaminidases may allow the investigation of a number of diseases including osteoarthritis (Liu, Numa et al., 2004), allergy (Reese et al., 2007), Alzheimer's disease (Liu, Iqbal et al., 2004), and cancer (Woynarowska et al., 1992). Inhibition of N-acetylgalactosaminyltransferases (Kato et al., 2010) and protection of macrophage activating factor (Greco et al., 2009) may provide new strategies for the treatment of cancer. There are many piperidine hexosaminidase inhibitors, such as naturally occurring nagstatin (Tatsuta et al., 1997) and DNJNAc (Fleet et al., 1986; Fleet et al., 1987; Steiner et al., 2009), some with picomolar inhibition (Ho et al., 2010). Until very recently, potent furanose analogue inhibitors of hexosaminidases have been unknown. The first pyrrolizidine β-hexosaminidase inhibitor, pochonicine 1 (Fig. 1) [or its enantiomer], has been isolated from a fungal strain (Usuki et al., 2009). A rare example of a pyrrolidine potent hexosaminidase inhibitor is the iminoarabinitol LABNAc 2 (Rountree et al., 2007; Rountree et al., 2009) which has promise for the study of lysosomal storage of oligosaccharide and glycosphingolipid in iminosugar treated cells (Boomkamp et al., 2010).

In a study of the hexosaminidase inhibition of diastereomers of LABNAc 2 (Fig. 1), the L-xylo-epimer L-XYLNAc 4 has been prepared from L-glucuronolactone 6, a common constituent of the chiral pool for the preparation of imino sugars (Best, Wang et al., 2010). The lactone 6 may be efficiently converted to the diol 5 (Best, Chairatana et al., 2010) which has been further transformed to 4via the N-benzyl L-XYLNAc 3 of L-XYLNAc. This paper reports the crystal structure of 3 which establishes the relative configuration and will allow modelling studies to rationalize enzyme inhibition by the diastereomeric 2-acetamido-pyrrolidine sugar mimics; the absolute configuration is determined by the use of L-glucuronolactone 6 as the starting material.

The pyrrolidine ring of the title compound adopts an envelope conformation with the nitrogen lying out of the plane (Fig. 2). The compound exists as chains of hydrogen-bonded molecules lying parallel to the a-axis (Fig. 3). Each molecule is a donor and acceptor for 3 hydrogen bonds and the hydrogen bond involving O19 is bifurcated. Only classical hydrogen bonding is considered.

Experimental

N-Benzyl-L-XYLNAc 3 was crystallized from acetonitrile: m.p. 396-399 K; [α]D25 +39.9 (c, 0.99 in MeOH).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of L-glucuronolactone as the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.29) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 3.

Fig. 3.

Packing diagram of the title compound with hydrogen bonds shown by dotted lines.

Crystal data

C14H20N2O3 F(000) = 568
Mr = 264.32 Dx = 1.309 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1650 reflections
a = 4.9731 (1) Å θ = 5–27°
b = 10.0145 (3) Å µ = 0.09 mm1
c = 26.9297 (7) Å T = 150 K
V = 1341.18 (6) Å3 Needle, colourless
Z = 4 0.50 × 0.15 × 0.05 mm

Data collection

Nonius KappaCCD area-detector diffractometer 1471 reflections with I > 2σ(I)
graphite Rint = 0.040
ω scans θmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −6→6
Tmin = 0.77, Tmax = 1.00 k = −12→12
7494 measured reflections l = −34→34
1788 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.130 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.9P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95 (Δ/σ)max = 0.0003
1788 reflections Δρmax = 0.33 e Å3
172 parameters Δρmin = −0.46 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9783 (4) 0.43009 (19) 0.61171 (7) 0.0319
C2 0.7716 (7) 0.4811 (3) 0.58063 (10) 0.0297
C3 0.6606 (6) 0.6164 (3) 0.59663 (10) 0.0231
N4 0.4652 (5) 0.6138 (2) 0.63782 (8) 0.0240
C5 0.5868 (6) 0.5705 (3) 0.68516 (10) 0.0294
C6 0.3890 (6) 0.5636 (3) 0.72762 (9) 0.0260
C7 0.1951 (6) 0.4640 (3) 0.72916 (10) 0.0290
C8 0.0221 (7) 0.4529 (3) 0.76921 (11) 0.0382
C9 0.0372 (7) 0.5432 (4) 0.80805 (11) 0.0431
C10 0.2268 (8) 0.6428 (4) 0.80709 (11) 0.0441
C11 0.4029 (7) 0.6540 (3) 0.76700 (11) 0.0359
C12 0.3731 (6) 0.7532 (3) 0.64027 (10) 0.0262
C13 0.3392 (6) 0.7942 (3) 0.58540 (9) 0.0240
C14 0.5058 (6) 0.6899 (3) 0.55652 (9) 0.0259
O15 0.3165 (4) 0.6041 (2) 0.53220 (7) 0.0325
N16 0.4213 (5) 0.9324 (2) 0.57677 (8) 0.0258
C17 0.2483 (6) 1.0276 (3) 0.56297 (10) 0.0243
C18 0.3628 (7) 1.1653 (3) 0.55702 (12) 0.0344
O19 0.0046 (4) 1.0055 (2) 0.55648 (7) 0.0301
H22 0.8439 0.4905 0.5468 0.0376*
H21 0.6258 0.4171 0.5801 0.0378*
H31 0.8146 0.6719 0.6070 0.0290*
H51 0.6619 0.4808 0.6798 0.0390*
H52 0.7323 0.6330 0.6949 0.0386*
H71 0.1814 0.4027 0.7021 0.0362*
H81 −0.1097 0.3838 0.7705 0.0516*
H91 −0.0852 0.5371 0.8355 0.0554*
H101 0.2377 0.7039 0.8338 0.0523*
H111 0.5375 0.7242 0.7665 0.0449*
H122 0.2057 0.7596 0.6587 0.0343*
H121 0.5034 0.8116 0.6565 0.0343*
H131 0.1474 0.7860 0.5763 0.0293*
H141 0.6349 0.7323 0.5324 0.0339*
H181 0.2239 1.2282 0.5501 0.0525*
H183 0.4944 1.1658 0.5306 0.0528*
H182 0.4537 1.1924 0.5865 0.0527*
H151 0.3832 0.5671 0.5065 0.0524*
H161 0.5958 0.9521 0.5796 0.0324*
H11 1.0957 0.4903 0.6166 0.0526*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0291 (11) 0.0288 (11) 0.0377 (10) 0.0048 (10) 0.0042 (10) 0.0039 (9)
C2 0.0294 (15) 0.0284 (15) 0.0313 (13) 0.0024 (14) 0.0030 (13) −0.0026 (12)
C3 0.0188 (12) 0.0250 (13) 0.0255 (12) −0.0023 (12) 0.0046 (11) −0.0004 (11)
N4 0.0245 (12) 0.0263 (12) 0.0212 (10) 0.0009 (11) 0.0047 (10) 0.0021 (9)
C5 0.0259 (14) 0.0339 (16) 0.0285 (13) 0.0004 (14) −0.0001 (13) 0.0041 (12)
C6 0.0275 (13) 0.0278 (15) 0.0228 (12) 0.0025 (13) −0.0014 (12) 0.0050 (11)
C7 0.0293 (15) 0.0328 (16) 0.0250 (12) 0.0011 (13) −0.0034 (12) 0.0055 (12)
C8 0.0334 (16) 0.050 (2) 0.0309 (14) −0.0051 (16) 0.0010 (14) 0.0136 (14)
C9 0.0385 (17) 0.063 (2) 0.0279 (14) 0.0076 (19) 0.0069 (14) 0.0106 (15)
C10 0.058 (2) 0.047 (2) 0.0277 (14) 0.007 (2) 0.0017 (17) −0.0042 (14)
C11 0.0422 (18) 0.0360 (17) 0.0295 (14) −0.0026 (15) −0.0002 (15) −0.0017 (13)
C12 0.0263 (14) 0.0271 (15) 0.0251 (12) 0.0021 (13) 0.0047 (12) 0.0014 (11)
C13 0.0213 (14) 0.0231 (14) 0.0275 (13) −0.0009 (12) 0.0012 (12) 0.0019 (11)
C14 0.0265 (14) 0.0282 (14) 0.0230 (12) −0.0031 (13) 0.0035 (13) −0.0009 (11)
O15 0.0286 (11) 0.0400 (12) 0.0288 (9) −0.0021 (10) −0.0029 (9) −0.0099 (9)
N16 0.0213 (11) 0.0238 (12) 0.0322 (12) −0.0029 (11) −0.0003 (10) 0.0021 (10)
C17 0.0248 (13) 0.0254 (14) 0.0228 (12) −0.0001 (12) −0.0009 (12) −0.0023 (11)
C18 0.0349 (17) 0.0257 (15) 0.0427 (16) −0.0007 (14) −0.0017 (16) 0.0013 (13)
O19 0.0213 (9) 0.0343 (11) 0.0345 (10) 0.0027 (10) −0.0024 (9) −0.0056 (9)

Geometric parameters (Å, °)

O1—C2 1.420 (4) C9—H91 0.960
O1—H11 0.850 C10—C11 1.394 (5)
C2—C3 1.525 (4) C10—H101 0.946
C2—H22 0.984 C11—H111 0.971
C2—H21 0.967 C12—C13 1.543 (4)
C3—N4 1.475 (3) C12—H122 0.971
C3—C14 1.517 (4) C12—H121 0.976
C3—H31 0.987 C13—C14 1.543 (4)
N4—C5 1.476 (3) C13—N16 1.462 (3)
N4—C12 1.471 (4) C13—H131 0.988
C5—C6 1.510 (4) C14—O15 1.434 (3)
C5—H51 0.984 C14—H141 1.007
C5—H52 0.992 O15—H151 0.852
C6—C7 1.388 (4) N16—C17 1.337 (4)
C6—C11 1.396 (4) N16—H161 0.893
C7—C8 1.384 (4) C17—C18 1.500 (4)
C7—H71 0.954 C17—O19 1.245 (4)
C8—C9 1.385 (5) C18—H181 0.954
C8—H81 0.954 C18—H183 0.966
C9—C10 1.373 (5) C18—H182 0.953
C2—O1—H11 109.5 C11—C10—H101 120.1
O1—C2—C3 114.5 (2) C6—C11—C10 120.3 (3)
O1—C2—H22 108.4 C6—C11—H111 119.5
C3—C2—H22 108.0 C10—C11—H111 120.2
O1—C2—H21 108.3 N4—C12—C13 104.1 (2)
C3—C2—H21 108.7 N4—C12—H122 110.6
H22—C2—H21 108.9 C13—C12—H122 112.3
C2—C3—N4 115.8 (2) N4—C12—H121 112.4
C2—C3—C14 114.5 (2) C13—C12—H121 110.0
N4—C3—C14 102.1 (2) H122—C12—H121 107.5
C2—C3—H31 107.5 C12—C13—C14 104.1 (2)
N4—C3—H31 107.9 C12—C13—N16 111.9 (2)
C14—C3—H31 108.8 C14—C13—N16 114.2 (2)
C3—N4—C5 112.6 (2) C12—C13—H131 108.7
C3—N4—C12 102.8 (2) C14—C13—H131 109.7
C5—N4—C12 111.6 (2) N16—C13—H131 108.0
N4—C5—C6 113.6 (2) C13—C14—C3 104.0 (2)
N4—C5—H51 107.2 C13—C14—O15 106.5 (2)
C6—C5—H51 108.5 C3—C14—O15 111.5 (2)
N4—C5—H52 110.0 C13—C14—H141 112.5
C6—C5—H52 107.7 C3—C14—H141 109.9
H51—C5—H52 109.8 O15—C14—H141 112.1
C5—C6—C7 120.5 (3) C14—O15—H151 112.1
C5—C6—C11 120.9 (3) C13—N16—C17 122.7 (2)
C7—C6—C11 118.5 (3) C13—N16—H161 117.8
C6—C7—C8 120.8 (3) C17—N16—H161 119.4
C6—C7—H71 119.3 N16—C17—C18 116.2 (3)
C8—C7—H71 119.9 N16—C17—O19 122.6 (3)
C7—C8—C9 120.2 (3) C18—C17—O19 121.2 (3)
C7—C8—H81 120.9 C17—C18—H181 110.7
C9—C8—H81 119.0 C17—C18—H183 109.9
C8—C9—C10 119.9 (3) H181—C18—H183 110.0
C8—C9—H91 120.4 C17—C18—H182 110.7
C10—C9—H91 119.7 H181—C18—H182 108.6
C9—C10—C11 120.3 (3) H183—C18—H182 106.8
C9—C10—H101 119.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H51···O1 0.98 2.47 3.111 (4) 123
C14—H141···O15i 1.01 2.56 3.514 (4) 159
O15—H151···O19i 0.85 1.94 2.790 (4) 173
N16—H161···O19ii 0.89 2.19 3.041 (4) 159
O1—H11···N4ii 0.85 2.29 3.121 (4) 167

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5029).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  3. Best, D., Chairatana, P., Glawar, A. F. G., Crabtree, E., Butters, T. D., Wilson, F. X., Yu, C.-Y., Wang, W.-B., Jia, Y.-M., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett.51, 2222–2224.
  4. Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319.
  5. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  6. Boomkamp, S. D., Rountree, J. S. S., Neville, D. C. A., Dwek, R. A., Fleet, G. W. J. & Butters, T. D. (2010). Glycoconj. J.27, 297–308. [DOI] [PubMed]
  7. Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990.
  8. Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett.15, 1051–1054.
  9. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  10. Greco, M., De Mitri, M., Chiriaco, F., Leo, G., Brienza, E. & Maffia, M. (2009). Cancer Lett.283, 222–229. [DOI] [PubMed]
  11. Ho, C.-W., Popat, S. D., Liu, T. A., Tsai, K.-C., Ho, M. J., Chen, W.-H., Yang, A.-S. & Lin, C.-H. (2010). ACS Chem. Biol.5, doi:10.1021/cb100011u. [DOI] [PubMed]
  12. Kato, K., Takeuchi, H., Kanoh, A., Miyahara, N., Nemoto-Sasaki, Y., Morimoto-Tomita, M., Matsubara, A., Ohashi, Y., Waki, M., Usami, K., Mandel, U., Clausen, H., Higashi, N. & Irimura, T. (2010). Glycoconj. J.27, 267–276. [DOI] [PubMed]
  13. Liu, F., Iqbal, K., Grundje-Iqbal, I., Hart, G. W. & Gong, C.-X. (2004). Proc. Natl. Acad. Sci.101, 10804–10809. [DOI] [PMC free article] [PubMed]
  14. Liu, J., Numa, M. M. D., Huang, S.-J., Sears, P., Shikhman, A. R. & Wong, C.-H. (2004). J. Org. Chem.69, 6273–6283. [DOI] [PubMed]
  15. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Reese, T. A., Liang, H.-E., Tager, A. M., Luster, A. D., van Roojen, N., Voehringer, D. & Locksley, R. M. (2007). Nature (London), 447, 92–96. [DOI] [PMC free article] [PubMed]
  18. Rountree, J. S. S., Butters, T. D., Wormald, M. R., Boomkamp, S. D., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2009). Chem. Med. Chem.4, 378–392. [DOI] [PubMed]
  19. Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 4287–4291.
  20. Steiner, A. J., Schitter, G., Stutz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J. & Tropak, M. B. (2009). Tetrahedron Asymmetry, 20, 832–835. [DOI] [PMC free article] [PubMed]
  21. Tatsuta, K., Miura, S. & Gunji, H. (1997). Bull. Chem. Soc. Jpn.70, 427–436.
  22. Usuki, H., Toyo-oka, M., Kanzaki, H., Okuda, T. & Nitoda, T. (2009). Bioorg. Med. Chem.17, 7248–7253. [DOI] [PubMed]
  23. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.
  24. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
  25. Woynarowska, B., Wikiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res.12, 161–166. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014145/lh5029sup1.cif

e-66-o1147-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014145/lh5029Isup2.hkl

e-66-o1147-Isup2.hkl (89.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES