Abstract
X-ray crystallography defines the relative configuration at the three-stereogenic centres in the title compound N-benzyl-l-XYLNAc, C14H20N2O3. The five-membered pyrrolidine ring adopts an envelope conformation with the N atom lying out of the plane of the other four atoms. In the crystal structure, intermolecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds link the molecules into chains along [100]. The carbonyl group O atom acts as an acceptor for a bifurcated hydrogen bond. The absolute configuration is determined by the use of l-glucuronolactone as the starting material for the synthesis.
Related literature
For iminosugars see: Asano et al. (2000 ▶); Watson et al. (2001 ▶). For the inhibition of hexosaminidases, see: Liu, Numa et al. (2004 ▶); Reese et al. (2007 ▶); Liu, Iqbal et al. (2004 ▶); Woynarowska et al. (1992 ▶). For piperidine hexosaminidase inhibitors, see: Tatsuta et al. (1997 ▶); Fleet et al. (1986 ▶, 1987 ▶); Steiner et al. (2009 ▶); Ho et al. (2010 ▶); For furanose hexosaminidase inhibitors, see: Usuki et al. (2009 ▶); Rountree et al. (2007 ▶, 2009 ▶); Boomkamp et al. (2010 ▶). For strategies for cancer treatment, see: Kato et al. (2010 ▶); Greco et al. (2009 ▶). For the use of glucuronolactone as a starting material for the synthesis of iminosugars, see: Best, Wang et al. (2010 ▶); Best, Chairatana et al. (2010 ▶).
Experimental
Crystal data
C14H20N2O3
M r = 264.32
Orthorhombic,
a = 4.9731 (1) Å
b = 10.0145 (3) Å
c = 26.9297 (7) Å
V = 1341.18 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 150 K
0.50 × 0.15 × 0.05 mm
Data collection
Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.77, T max = 1.00
7494 measured reflections
1788 independent reflections
1471 reflections with I > 2σ(I)
R int = 0.040
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.130
S = 0.95
1788 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.33 e Å−3
Δρmin = −0.46 e Å−3
Data collection: COLLECT (Nonius, 2001 ▶); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO/SCALEPACK and Görbitz (1999 ▶); program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: CAMERON (Watkin et al., 1996 ▶); software used to prepare material for publication: CRYSTALS.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014145/lh5029sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014145/lh5029Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O15—H151⋯O19i | 0.85 | 1.94 | 2.790 (4) | 173 |
| N16—H161⋯O19ii | 0.89 | 2.19 | 3.041 (4) | 159 |
| O1—H11⋯N4ii | 0.85 | 2.29 | 3.121 (4) | 167 |
Symmetry codes: (i)
; (ii)
.
supplementary crystallographic information
Comment
Iminosugars in which the oxygen of a sugar ring is replaced by nitrogen comprise a large family of inhibitors of carbohydrate processing enzymes (Asano et al., 2000; Watson et al., 2001). Specific inhibition of individual hexosaminidases may allow the investigation of a number of diseases including osteoarthritis (Liu, Numa et al., 2004), allergy (Reese et al., 2007), Alzheimer's disease (Liu, Iqbal et al., 2004), and cancer (Woynarowska et al., 1992). Inhibition of N-acetylgalactosaminyltransferases (Kato et al., 2010) and protection of macrophage activating factor (Greco et al., 2009) may provide new strategies for the treatment of cancer. There are many piperidine hexosaminidase inhibitors, such as naturally occurring nagstatin (Tatsuta et al., 1997) and DNJNAc (Fleet et al., 1986; Fleet et al., 1987; Steiner et al., 2009), some with picomolar inhibition (Ho et al., 2010). Until very recently, potent furanose analogue inhibitors of hexosaminidases have been unknown. The first pyrrolizidine β-hexosaminidase inhibitor, pochonicine 1 (Fig. 1) [or its enantiomer], has been isolated from a fungal strain (Usuki et al., 2009). A rare example of a pyrrolidine potent hexosaminidase inhibitor is the iminoarabinitol LABNAc 2 (Rountree et al., 2007; Rountree et al., 2009) which has promise for the study of lysosomal storage of oligosaccharide and glycosphingolipid in iminosugar treated cells (Boomkamp et al., 2010).
In a study of the hexosaminidase inhibition of diastereomers of LABNAc 2 (Fig. 1), the L-xylo-epimer L-XYLNAc 4 has been prepared from L-glucuronolactone 6, a common constituent of the chiral pool for the preparation of imino sugars (Best, Wang et al., 2010). The lactone 6 may be efficiently converted to the diol 5 (Best, Chairatana et al., 2010) which has been further transformed to 4via the N-benzyl L-XYLNAc 3 of L-XYLNAc. This paper reports the crystal structure of 3 which establishes the relative configuration and will allow modelling studies to rationalize enzyme inhibition by the diastereomeric 2-acetamido-pyrrolidine sugar mimics; the absolute configuration is determined by the use of L-glucuronolactone 6 as the starting material.
The pyrrolidine ring of the title compound adopts an envelope conformation with the nitrogen lying out of the plane (Fig. 2). The compound exists as chains of hydrogen-bonded molecules lying parallel to the a-axis (Fig. 3). Each molecule is a donor and acceptor for 3 hydrogen bonds and the hydrogen bond involving O19 is bifurcated. Only classical hydrogen bonding is considered.
Experimental
N-Benzyl-L-XYLNAc 3 was crystallized from acetonitrile: m.p. 396-399 K; [α]D25 +39.9 (c, 0.99 in MeOH).
Refinement
In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the use of L-glucuronolactone as the starting material.
The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.29) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Figures
Fig. 1.
Synthetic Scheme
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
Fig. 3.
Packing diagram of the title compound with hydrogen bonds shown by dotted lines.
Crystal data
| C14H20N2O3 | F(000) = 568 |
| Mr = 264.32 | Dx = 1.309 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 1650 reflections |
| a = 4.9731 (1) Å | θ = 5–27° |
| b = 10.0145 (3) Å | µ = 0.09 mm−1 |
| c = 26.9297 (7) Å | T = 150 K |
| V = 1341.18 (6) Å3 | Needle, colourless |
| Z = 4 | 0.50 × 0.15 × 0.05 mm |
Data collection
| Nonius KappaCCD area-detector diffractometer | 1471 reflections with I > 2σ(I) |
| graphite | Rint = 0.040 |
| ω scans | θmax = 27.5°, θmin = 5.1° |
| Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −6→6 |
| Tmin = 0.77, Tmax = 1.00 | k = −12→12 |
| 7494 measured reflections | l = −34→34 |
| 1788 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
| wR(F2) = 0.130 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.07P)2 + 0.9P], where P = [max(Fo2,0) + 2Fc2]/3 |
| S = 0.95 | (Δ/σ)max = 0.0003 |
| 1788 reflections | Δρmax = 0.33 e Å−3 |
| 172 parameters | Δρmin = −0.46 e Å−3 |
| 0 restraints |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.9783 (4) | 0.43009 (19) | 0.61171 (7) | 0.0319 | |
| C2 | 0.7716 (7) | 0.4811 (3) | 0.58063 (10) | 0.0297 | |
| C3 | 0.6606 (6) | 0.6164 (3) | 0.59663 (10) | 0.0231 | |
| N4 | 0.4652 (5) | 0.6138 (2) | 0.63782 (8) | 0.0240 | |
| C5 | 0.5868 (6) | 0.5705 (3) | 0.68516 (10) | 0.0294 | |
| C6 | 0.3890 (6) | 0.5636 (3) | 0.72762 (9) | 0.0260 | |
| C7 | 0.1951 (6) | 0.4640 (3) | 0.72916 (10) | 0.0290 | |
| C8 | 0.0221 (7) | 0.4529 (3) | 0.76921 (11) | 0.0382 | |
| C9 | 0.0372 (7) | 0.5432 (4) | 0.80805 (11) | 0.0431 | |
| C10 | 0.2268 (8) | 0.6428 (4) | 0.80709 (11) | 0.0441 | |
| C11 | 0.4029 (7) | 0.6540 (3) | 0.76700 (11) | 0.0359 | |
| C12 | 0.3731 (6) | 0.7532 (3) | 0.64027 (10) | 0.0262 | |
| C13 | 0.3392 (6) | 0.7942 (3) | 0.58540 (9) | 0.0240 | |
| C14 | 0.5058 (6) | 0.6899 (3) | 0.55652 (9) | 0.0259 | |
| O15 | 0.3165 (4) | 0.6041 (2) | 0.53220 (7) | 0.0325 | |
| N16 | 0.4213 (5) | 0.9324 (2) | 0.57677 (8) | 0.0258 | |
| C17 | 0.2483 (6) | 1.0276 (3) | 0.56297 (10) | 0.0243 | |
| C18 | 0.3628 (7) | 1.1653 (3) | 0.55702 (12) | 0.0344 | |
| O19 | 0.0046 (4) | 1.0055 (2) | 0.55648 (7) | 0.0301 | |
| H22 | 0.8439 | 0.4905 | 0.5468 | 0.0376* | |
| H21 | 0.6258 | 0.4171 | 0.5801 | 0.0378* | |
| H31 | 0.8146 | 0.6719 | 0.6070 | 0.0290* | |
| H51 | 0.6619 | 0.4808 | 0.6798 | 0.0390* | |
| H52 | 0.7323 | 0.6330 | 0.6949 | 0.0386* | |
| H71 | 0.1814 | 0.4027 | 0.7021 | 0.0362* | |
| H81 | −0.1097 | 0.3838 | 0.7705 | 0.0516* | |
| H91 | −0.0852 | 0.5371 | 0.8355 | 0.0554* | |
| H101 | 0.2377 | 0.7039 | 0.8338 | 0.0523* | |
| H111 | 0.5375 | 0.7242 | 0.7665 | 0.0449* | |
| H122 | 0.2057 | 0.7596 | 0.6587 | 0.0343* | |
| H121 | 0.5034 | 0.8116 | 0.6565 | 0.0343* | |
| H131 | 0.1474 | 0.7860 | 0.5763 | 0.0293* | |
| H141 | 0.6349 | 0.7323 | 0.5324 | 0.0339* | |
| H181 | 0.2239 | 1.2282 | 0.5501 | 0.0525* | |
| H183 | 0.4944 | 1.1658 | 0.5306 | 0.0528* | |
| H182 | 0.4537 | 1.1924 | 0.5865 | 0.0527* | |
| H151 | 0.3832 | 0.5671 | 0.5065 | 0.0524* | |
| H161 | 0.5958 | 0.9521 | 0.5796 | 0.0324* | |
| H11 | 1.0957 | 0.4903 | 0.6166 | 0.0526* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0291 (11) | 0.0288 (11) | 0.0377 (10) | 0.0048 (10) | 0.0042 (10) | 0.0039 (9) |
| C2 | 0.0294 (15) | 0.0284 (15) | 0.0313 (13) | 0.0024 (14) | 0.0030 (13) | −0.0026 (12) |
| C3 | 0.0188 (12) | 0.0250 (13) | 0.0255 (12) | −0.0023 (12) | 0.0046 (11) | −0.0004 (11) |
| N4 | 0.0245 (12) | 0.0263 (12) | 0.0212 (10) | 0.0009 (11) | 0.0047 (10) | 0.0021 (9) |
| C5 | 0.0259 (14) | 0.0339 (16) | 0.0285 (13) | 0.0004 (14) | −0.0001 (13) | 0.0041 (12) |
| C6 | 0.0275 (13) | 0.0278 (15) | 0.0228 (12) | 0.0025 (13) | −0.0014 (12) | 0.0050 (11) |
| C7 | 0.0293 (15) | 0.0328 (16) | 0.0250 (12) | 0.0011 (13) | −0.0034 (12) | 0.0055 (12) |
| C8 | 0.0334 (16) | 0.050 (2) | 0.0309 (14) | −0.0051 (16) | 0.0010 (14) | 0.0136 (14) |
| C9 | 0.0385 (17) | 0.063 (2) | 0.0279 (14) | 0.0076 (19) | 0.0069 (14) | 0.0106 (15) |
| C10 | 0.058 (2) | 0.047 (2) | 0.0277 (14) | 0.007 (2) | 0.0017 (17) | −0.0042 (14) |
| C11 | 0.0422 (18) | 0.0360 (17) | 0.0295 (14) | −0.0026 (15) | −0.0002 (15) | −0.0017 (13) |
| C12 | 0.0263 (14) | 0.0271 (15) | 0.0251 (12) | 0.0021 (13) | 0.0047 (12) | 0.0014 (11) |
| C13 | 0.0213 (14) | 0.0231 (14) | 0.0275 (13) | −0.0009 (12) | 0.0012 (12) | 0.0019 (11) |
| C14 | 0.0265 (14) | 0.0282 (14) | 0.0230 (12) | −0.0031 (13) | 0.0035 (13) | −0.0009 (11) |
| O15 | 0.0286 (11) | 0.0400 (12) | 0.0288 (9) | −0.0021 (10) | −0.0029 (9) | −0.0099 (9) |
| N16 | 0.0213 (11) | 0.0238 (12) | 0.0322 (12) | −0.0029 (11) | −0.0003 (10) | 0.0021 (10) |
| C17 | 0.0248 (13) | 0.0254 (14) | 0.0228 (12) | −0.0001 (12) | −0.0009 (12) | −0.0023 (11) |
| C18 | 0.0349 (17) | 0.0257 (15) | 0.0427 (16) | −0.0007 (14) | −0.0017 (16) | 0.0013 (13) |
| O19 | 0.0213 (9) | 0.0343 (11) | 0.0345 (10) | 0.0027 (10) | −0.0024 (9) | −0.0056 (9) |
Geometric parameters (Å, °)
| O1—C2 | 1.420 (4) | C9—H91 | 0.960 |
| O1—H11 | 0.850 | C10—C11 | 1.394 (5) |
| C2—C3 | 1.525 (4) | C10—H101 | 0.946 |
| C2—H22 | 0.984 | C11—H111 | 0.971 |
| C2—H21 | 0.967 | C12—C13 | 1.543 (4) |
| C3—N4 | 1.475 (3) | C12—H122 | 0.971 |
| C3—C14 | 1.517 (4) | C12—H121 | 0.976 |
| C3—H31 | 0.987 | C13—C14 | 1.543 (4) |
| N4—C5 | 1.476 (3) | C13—N16 | 1.462 (3) |
| N4—C12 | 1.471 (4) | C13—H131 | 0.988 |
| C5—C6 | 1.510 (4) | C14—O15 | 1.434 (3) |
| C5—H51 | 0.984 | C14—H141 | 1.007 |
| C5—H52 | 0.992 | O15—H151 | 0.852 |
| C6—C7 | 1.388 (4) | N16—C17 | 1.337 (4) |
| C6—C11 | 1.396 (4) | N16—H161 | 0.893 |
| C7—C8 | 1.384 (4) | C17—C18 | 1.500 (4) |
| C7—H71 | 0.954 | C17—O19 | 1.245 (4) |
| C8—C9 | 1.385 (5) | C18—H181 | 0.954 |
| C8—H81 | 0.954 | C18—H183 | 0.966 |
| C9—C10 | 1.373 (5) | C18—H182 | 0.953 |
| C2—O1—H11 | 109.5 | C11—C10—H101 | 120.1 |
| O1—C2—C3 | 114.5 (2) | C6—C11—C10 | 120.3 (3) |
| O1—C2—H22 | 108.4 | C6—C11—H111 | 119.5 |
| C3—C2—H22 | 108.0 | C10—C11—H111 | 120.2 |
| O1—C2—H21 | 108.3 | N4—C12—C13 | 104.1 (2) |
| C3—C2—H21 | 108.7 | N4—C12—H122 | 110.6 |
| H22—C2—H21 | 108.9 | C13—C12—H122 | 112.3 |
| C2—C3—N4 | 115.8 (2) | N4—C12—H121 | 112.4 |
| C2—C3—C14 | 114.5 (2) | C13—C12—H121 | 110.0 |
| N4—C3—C14 | 102.1 (2) | H122—C12—H121 | 107.5 |
| C2—C3—H31 | 107.5 | C12—C13—C14 | 104.1 (2) |
| N4—C3—H31 | 107.9 | C12—C13—N16 | 111.9 (2) |
| C14—C3—H31 | 108.8 | C14—C13—N16 | 114.2 (2) |
| C3—N4—C5 | 112.6 (2) | C12—C13—H131 | 108.7 |
| C3—N4—C12 | 102.8 (2) | C14—C13—H131 | 109.7 |
| C5—N4—C12 | 111.6 (2) | N16—C13—H131 | 108.0 |
| N4—C5—C6 | 113.6 (2) | C13—C14—C3 | 104.0 (2) |
| N4—C5—H51 | 107.2 | C13—C14—O15 | 106.5 (2) |
| C6—C5—H51 | 108.5 | C3—C14—O15 | 111.5 (2) |
| N4—C5—H52 | 110.0 | C13—C14—H141 | 112.5 |
| C6—C5—H52 | 107.7 | C3—C14—H141 | 109.9 |
| H51—C5—H52 | 109.8 | O15—C14—H141 | 112.1 |
| C5—C6—C7 | 120.5 (3) | C14—O15—H151 | 112.1 |
| C5—C6—C11 | 120.9 (3) | C13—N16—C17 | 122.7 (2) |
| C7—C6—C11 | 118.5 (3) | C13—N16—H161 | 117.8 |
| C6—C7—C8 | 120.8 (3) | C17—N16—H161 | 119.4 |
| C6—C7—H71 | 119.3 | N16—C17—C18 | 116.2 (3) |
| C8—C7—H71 | 119.9 | N16—C17—O19 | 122.6 (3) |
| C7—C8—C9 | 120.2 (3) | C18—C17—O19 | 121.2 (3) |
| C7—C8—H81 | 120.9 | C17—C18—H181 | 110.7 |
| C9—C8—H81 | 119.0 | C17—C18—H183 | 109.9 |
| C8—C9—C10 | 119.9 (3) | H181—C18—H183 | 110.0 |
| C8—C9—H91 | 120.4 | C17—C18—H182 | 110.7 |
| C10—C9—H91 | 119.7 | H181—C18—H182 | 108.6 |
| C9—C10—C11 | 120.3 (3) | H183—C18—H182 | 106.8 |
| C9—C10—H101 | 119.6 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H51···O1 | 0.98 | 2.47 | 3.111 (4) | 123 |
| C14—H141···O15i | 1.01 | 2.56 | 3.514 (4) | 159 |
| O15—H151···O19i | 0.85 | 1.94 | 2.790 (4) | 173 |
| N16—H161···O19ii | 0.89 | 2.19 | 3.041 (4) | 159 |
| O1—H11···N4ii | 0.85 | 2.29 | 3.121 (4) | 167 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5029).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
- Best, D., Chairatana, P., Glawar, A. F. G., Crabtree, E., Butters, T. D., Wilson, F. X., Yu, C.-Y., Wang, W.-B., Jia, Y.-M., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Lett.51, 2222–2224.
- Best, D., Wang, C., Weymouth-Wilson, A. C., Clarkson, R. A., Wilson, F. X., Nash, R. J., Miyauchi, S., Kato, A. & Fleet, G. W. J. (2010). Tetrahedron Asymmetry, 21, 311–319.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Boomkamp, S. D., Rountree, J. S. S., Neville, D. C. A., Dwek, R. A., Fleet, G. W. J. & Butters, T. D. (2010). Glycoconj. J.27, 297–308. [DOI] [PubMed]
- Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990.
- Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett.15, 1051–1054.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
- Greco, M., De Mitri, M., Chiriaco, F., Leo, G., Brienza, E. & Maffia, M. (2009). Cancer Lett.283, 222–229. [DOI] [PubMed]
- Ho, C.-W., Popat, S. D., Liu, T. A., Tsai, K.-C., Ho, M. J., Chen, W.-H., Yang, A.-S. & Lin, C.-H. (2010). ACS Chem. Biol.5, doi:10.1021/cb100011u. [DOI] [PubMed]
- Kato, K., Takeuchi, H., Kanoh, A., Miyahara, N., Nemoto-Sasaki, Y., Morimoto-Tomita, M., Matsubara, A., Ohashi, Y., Waki, M., Usami, K., Mandel, U., Clausen, H., Higashi, N. & Irimura, T. (2010). Glycoconj. J.27, 267–276. [DOI] [PubMed]
- Liu, F., Iqbal, K., Grundje-Iqbal, I., Hart, G. W. & Gong, C.-X. (2004). Proc. Natl. Acad. Sci.101, 10804–10809. [DOI] [PMC free article] [PubMed]
- Liu, J., Numa, M. M. D., Huang, S.-J., Sears, P., Shikhman, A. R. & Wong, C.-H. (2004). J. Org. Chem.69, 6273–6283. [DOI] [PubMed]
- Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Reese, T. A., Liang, H.-E., Tager, A. M., Luster, A. D., van Roojen, N., Voehringer, D. & Locksley, R. M. (2007). Nature (London), 447, 92–96. [DOI] [PMC free article] [PubMed]
- Rountree, J. S. S., Butters, T. D., Wormald, M. R., Boomkamp, S. D., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2009). Chem. Med. Chem.4, 378–392. [DOI] [PubMed]
- Rountree, J. S. S., Butters, T. D., Wormald, M. R., Dwek, R. A., Asano, N., Ikeda, K., Evinson, E. L., Nash, R. J. & Fleet, G. W. J. (2007). Tetrahedron Lett.48, 4287–4291.
- Steiner, A. J., Schitter, G., Stutz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J. & Tropak, M. B. (2009). Tetrahedron Asymmetry, 20, 832–835. [DOI] [PMC free article] [PubMed]
- Tatsuta, K., Miura, S. & Gunji, H. (1997). Bull. Chem. Soc. Jpn.70, 427–436.
- Usuki, H., Toyo-oka, M., Kanzaki, H., Okuda, T. & Nitoda, T. (2009). Bioorg. Med. Chem.17, 7248–7253. [DOI] [PubMed]
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
- Woynarowska, B., Wikiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J. & Bernacki, R. J. (1992). Anticancer Res.12, 161–166. [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014145/lh5029sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014145/lh5029Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



