Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1142. doi: 10.1107/S1600536810013796

N-(3,4-Difluoro­phen­yl)-3,4,5-trimethoxy­benzamide

Hyeong Choi a, Byung Hee Han a, Taewoo Lee a, Sung Kwon Kang a,*, Chang Keun Sung b
PMCID: PMC2979189  PMID: 21579190

Abstract

In the title amide, C16H15F2NO4, the dihedral angle between the benzene rings is 2.33 (15)°. Mol­ecules are linked in the crystal structure by N—H⋯O hydrogen bonding involving N—H and C=O groups of the amide function, leading to a supra­molecular chain along [100].

Related literature

For background to the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Cabanes et al. (1994); Dawley & Flurkey (1993); Ha et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lee et al. (2007); Nerya et al. (2003); Park et al. (2010); Sung & Samyang Genex (2001); Yi et al. (2009, 2010).graphic file with name e-66-o1142-scheme1.jpg

Experimental

Crystal data

  • C16H15F2NO4

  • M r = 323.29

  • Monoclinic, Inline graphic

  • a = 5.0031 (3) Å

  • b = 8.8986 (5) Å

  • c = 32.726 (2) Å

  • β = 93.896 (4)°

  • V = 1453.59 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 174 K

  • 0.12 × 0.05 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • 10828 measured reflections

  • 2634 independent reflections

  • 1522 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.185

  • S = 1.05

  • 2634 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013796/tk2658sup1.cif

e-66-o1142-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013796/tk2658Isup2.hkl

e-66-o1142-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H15⋯O14i 0.93 (4) 2.02 (4) 2.872 (4) 152 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We wish to thank the DBIO company for partial support of this work.

supplementary crystallographic information

Comment

Melanin synthesis is principally responsible for skin color and plays a key role in the prevention of UV-induced skin damages. Tyrosinase is the key enzyme (Ha et al., 2007) that converts tyrosine to melanin and its inhibitors are target molecules for developing anti-pigmentation agents. Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. Common tyrosinase inhibitors (Dawley & Flurkey, 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid and arbutin (Cabanes et al., 1994). Recently, a number of reports have focused on the development of new agents for the inhibition of tyrosinase. They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010), thiosemicarbazone (Yi et al., 2009) groups in their respective molecule structure. The application of natural products as a melanin synthesis inhibitors has also attracted interest (Park et al., 2010; Sung et al., 2001). However, most of these are not sufficiently potent for practical use owing to their weak individual activities or due to safety concerns. Undoubtedly, significant research and development into novel tyrosinase inhibitors is required to generate molecules with better activities and reduced side-effects. In continuation of our program aimed to develop tyrosinase inhibitors, we have synthesized the title compound, N-(3,4-difluorophenyl)-3,4,5-trimethoxybenzamide, (I), from the reaction of 3,4-difluoroaniline with 3,4,5-trimethoxybenzoyl chloride under ambient condition. Herein, the crystal structure of (I) is described (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety (except for the C10 methyl group) and 3,4-difluoroaniline group are essentially planar, with a mean deviations of 0.027 Å and 0.006 Å, respectively, from the corresponding least-squares plane defined by the ten and nine, respectively, constituent atoms. The dihedral angle between the benzene rings is 2.33 (15) °. The presence of intermolecular N15—H15···O14i (symmetry code: (i) x-1, y, z) hydrogen bonds lead to the formation an 1-D supramolecular chain along the a axis, Table 1.

Experimental

3,4,5-Trimethoxybenzoyl chloride and 3,4-difluoroaniline were purchased from Sigma Chemical Co. Solvents used for synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and used without further purification. The title compound was prepared from the reaction of 3,4,5-trimethoxybenzoyl chloride (1.078 g, 5 mmol) and 3,4-difluoroaniline (0.5 g, 4 mmol) in THF with TEA (15 ml) as a catalyst. After being stirred for 5 h at 298 K, the mixture was treated with water and extracted with ethyl acetate. The combined extracts were dried over anhydrous magnesium sulfate. Removal of solvent gave a white solid (90%, m.pt. 428 K). Single crystals were obtained by slow evaporation of a methylene chloride and ethyl alcohol solution of (I) held at room temperature.

Refinement

The amide-H atom was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.96 Å, and with Uiso(H) = 1.2Ueq (carrier C) for aromatic and 1.5Ueq(carrier C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level.

Crystal data

C16H15F2NO4 F(000) = 672
Mr = 323.29 Dx = 1.477 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 761 reflections
a = 5.0031 (3) Å θ = 2.6–19.9°
b = 8.8986 (5) Å µ = 0.12 mm1
c = 32.726 (2) Å T = 174 K
β = 93.896 (4)° Needle, colourless
V = 1453.59 (15) Å3 0.12 × 0.05 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.080
φ and ω scans θmax = 25.5°, θmin = 2.4°
10828 measured reflections h = −4→6
2634 independent reflections k = −10→6
1522 reflections with I > 2σ(I) l = −39→34

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0682P)2 + 1.4724P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.065 (Δ/σ)max < 0.001
wR(F2) = 0.185 Δρmax = 0.32 e Å3
S = 1.05 Δρmin = −0.31 e Å3
2634 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
216 parameters Extinction coefficient: 0.014 (2)
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6607 (7) 0.3453 (4) 0.11117 (12) 0.0287 (9)
C2 0.4753 (7) 0.2630 (5) 0.13169 (11) 0.0295 (9)
H2 0.3569 0.1988 0.1172 0.035*
C3 0.4671 (7) 0.2766 (4) 0.17375 (12) 0.0290 (9)
C4 0.6362 (7) 0.3786 (4) 0.19522 (11) 0.0269 (9)
C5 0.8177 (7) 0.4651 (4) 0.17433 (12) 0.0308 (10)
C6 0.8325 (7) 0.4471 (4) 0.13255 (12) 0.0297 (9)
H6 0.9558 0.5022 0.1187 0.036*
O7 0.3015 (5) 0.1970 (3) 0.19728 (8) 0.0361 (7)
C8 0.1331 (8) 0.0851 (5) 0.17712 (13) 0.0387 (11)
H8A 0.0082 0.1328 0.1577 0.058*
H8B 0.0368 0.0323 0.1971 0.058*
H8C 0.2416 0.0154 0.1632 0.058*
O9 0.6159 (5) 0.3968 (3) 0.23691 (8) 0.0372 (8)
C10 0.8440 (8) 0.3424 (5) 0.26132 (13) 0.0436 (12)
H10A 0.8604 0.2359 0.2575 0.065*
H10B 0.8218 0.3633 0.2897 0.065*
H10C 1.0027 0.3915 0.2531 0.065*
O11 0.9674 (5) 0.5622 (3) 0.19817 (8) 0.0402 (8)
C12 1.1391 (8) 0.6627 (5) 0.17819 (14) 0.0445 (12)
H12A 1.2818 0.6068 0.1672 0.067*
H12B 1.2129 0.7351 0.1976 0.067*
H12C 1.0381 0.7138 0.1564 0.067*
C13 0.6990 (7) 0.3258 (4) 0.06673 (12) 0.0317 (10)
O14 0.9186 (5) 0.3442 (3) 0.05305 (8) 0.0409 (8)
N15 0.4757 (6) 0.2891 (4) 0.04286 (10) 0.0299 (8)
H15 0.313 (8) 0.294 (4) 0.0547 (11) 0.029 (10)*
C16 0.4673 (7) 0.2563 (5) 0.00065 (12) 0.0305 (9)
C17 0.2768 (8) 0.1532 (5) −0.01466 (13) 0.0389 (11)
H17 0.1633 0.1069 0.0028 0.047*
C18 0.2571 (9) 0.1203 (5) −0.05565 (13) 0.0426 (11)
C19 0.4247 (9) 0.1857 (5) −0.08182 (12) 0.0415 (11)
C20 0.6105 (9) 0.2881 (6) −0.06747 (13) 0.0493 (13)
H20 0.7228 0.3337 −0.0853 0.059*
C21 0.6312 (8) 0.3240 (5) −0.02595 (12) 0.0402 (11)
H21 0.7571 0.3944 −0.0161 0.048*
F22 0.0737 (6) 0.0196 (3) −0.07070 (8) 0.0697 (9)
F23 0.3998 (5) 0.1491 (3) −0.12188 (7) 0.0625 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0233 (19) 0.032 (2) 0.030 (2) 0.0051 (18) −0.0008 (16) −0.0001 (18)
C2 0.0215 (18) 0.035 (2) 0.032 (2) −0.0027 (17) 0.0031 (16) −0.0032 (18)
C3 0.0236 (19) 0.030 (2) 0.034 (2) 0.0022 (17) 0.0048 (17) 0.0008 (19)
C4 0.0277 (19) 0.032 (2) 0.021 (2) 0.0052 (18) 0.0021 (16) −0.0014 (18)
C5 0.028 (2) 0.028 (2) 0.035 (3) 0.0000 (18) −0.0016 (17) −0.0020 (19)
C6 0.027 (2) 0.030 (2) 0.031 (2) −0.0011 (18) 0.0014 (16) 0.0047 (18)
O7 0.0376 (15) 0.0399 (18) 0.0314 (16) −0.0088 (14) 0.0071 (12) 0.0033 (13)
C8 0.039 (2) 0.033 (2) 0.045 (3) −0.005 (2) 0.008 (2) 0.007 (2)
O9 0.0331 (15) 0.0477 (19) 0.0311 (17) 0.0038 (14) 0.0041 (12) −0.0016 (14)
C10 0.037 (2) 0.060 (3) 0.034 (3) 0.008 (2) 0.0027 (19) 0.005 (2)
O11 0.0464 (17) 0.0383 (17) 0.0351 (18) −0.0121 (14) −0.0030 (13) −0.0064 (14)
C12 0.042 (2) 0.040 (3) 0.051 (3) −0.007 (2) −0.004 (2) 0.001 (2)
C13 0.025 (2) 0.035 (2) 0.035 (2) 0.0000 (18) 0.0010 (17) −0.0018 (19)
O14 0.0242 (14) 0.066 (2) 0.0332 (17) −0.0050 (14) 0.0079 (12) −0.0011 (15)
N15 0.0239 (17) 0.041 (2) 0.025 (2) 0.0001 (16) 0.0027 (14) −0.0020 (16)
C16 0.0235 (19) 0.036 (2) 0.032 (2) 0.0010 (18) 0.0012 (16) −0.0018 (19)
C17 0.038 (2) 0.044 (3) 0.034 (3) −0.005 (2) 0.0042 (19) −0.004 (2)
C18 0.046 (3) 0.039 (3) 0.041 (3) 0.000 (2) −0.003 (2) −0.008 (2)
C19 0.047 (3) 0.056 (3) 0.021 (2) 0.013 (2) 0.0002 (19) −0.005 (2)
C20 0.044 (3) 0.074 (4) 0.031 (3) −0.001 (3) 0.006 (2) 0.011 (3)
C21 0.038 (2) 0.051 (3) 0.032 (3) −0.007 (2) 0.0018 (19) 0.001 (2)
F22 0.085 (2) 0.072 (2) 0.0507 (18) −0.0236 (18) −0.0041 (15) −0.0209 (16)
F23 0.0721 (18) 0.087 (2) 0.0284 (16) 0.0145 (16) 0.0001 (13) −0.0119 (14)

Geometric parameters (Å, °)

C1—C2 1.390 (5) O11—C12 1.429 (5)
C1—C6 1.402 (5) C12—H12A 0.96
C1—C13 1.490 (5) C12—H12B 0.96
C2—C3 1.385 (5) C12—H12C 0.96
C2—H2 0.93 C13—O14 1.226 (4)
C3—O7 1.367 (4) C13—N15 1.358 (5)
C3—C4 1.397 (5) N15—C16 1.410 (5)
C4—O9 1.384 (4) N15—H15 0.93 (4)
C4—C5 1.403 (5) C16—C21 1.375 (5)
C5—O11 1.355 (4) C16—C17 1.392 (5)
C5—C6 1.383 (5) C17—C18 1.370 (6)
C6—H6 0.93 C17—H17 0.93
O7—C8 1.436 (5) C18—F22 1.352 (5)
C8—H8A 0.96 C18—C19 1.368 (6)
C8—H8B 0.96 C19—F23 1.348 (5)
C8—H8C 0.96 C19—C20 1.362 (6)
O9—C10 1.432 (4) C20—C21 1.393 (6)
C10—H10A 0.96 C20—H20 0.93
C10—H10B 0.96 C21—H21 0.93
C10—H10C 0.96
C2—C1—C6 120.4 (4) C5—O11—C12 117.5 (3)
C2—C1—C13 123.0 (4) O11—C12—H12A 109.5
C6—C1—C13 116.6 (3) O11—C12—H12B 109.5
C3—C2—C1 120.0 (4) H12A—C12—H12B 109.5
C3—C2—H2 120 O11—C12—H12C 109.5
C1—C2—H2 120 H12A—C12—H12C 109.5
O7—C3—C2 125.1 (3) H12B—C12—H12C 109.5
O7—C3—C4 115.0 (3) O14—C13—N15 123.0 (4)
C2—C3—C4 119.9 (3) O14—C13—C1 121.3 (3)
O9—C4—C3 119.3 (3) N15—C13—C1 115.7 (3)
O9—C4—C5 120.6 (3) C13—N15—C16 125.6 (3)
C3—C4—C5 120.1 (3) C13—N15—H15 118 (2)
O11—C5—C6 125.3 (4) C16—N15—H15 117 (2)
O11—C5—C4 114.8 (3) C21—C16—C17 119.0 (4)
C6—C5—C4 119.8 (4) C21—C16—N15 123.4 (4)
C5—C6—C1 119.7 (4) C17—C16—N15 117.6 (3)
C5—C6—H6 120.1 C18—C17—C16 119.7 (4)
C1—C6—H6 120.1 C18—C17—H17 120.2
C3—O7—C8 117.4 (3) C16—C17—H17 120.2
O7—C8—H8A 109.5 F22—C18—C19 118.9 (4)
O7—C8—H8B 109.5 F22—C18—C17 120.0 (4)
H8A—C8—H8B 109.5 C19—C18—C17 121.1 (4)
O7—C8—H8C 109.5 F23—C19—C20 120.8 (4)
H8A—C8—H8C 109.5 F23—C19—C18 119.1 (4)
H8B—C8—H8C 109.5 C20—C19—C18 120.1 (4)
C4—O9—C10 113.7 (3) C19—C20—C21 119.6 (4)
O9—C10—H10A 109.5 C19—C20—H20 120.2
O9—C10—H10B 109.5 C21—C20—H20 120.2
H10A—C10—H10B 109.5 C16—C21—C20 120.6 (4)
O9—C10—H10C 109.5 C16—C21—H21 119.7
H10A—C10—H10C 109.5 C20—C21—H21 119.7
H10B—C10—H10C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N15—H15···O14i 0.93 (4) 2.02 (4) 2.872 (4) 152 (3)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2658).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol.46, 982–985. [DOI] [PubMed]
  3. Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci.58, 609–610
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Ha, Y. M., Chang, S. W., Song, S. H. & Lee, H. J. (2007). Biol. Pharm. Bull.30, 1711–1715. [DOI] [PubMed]
  7. Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49. [DOI] [PMC free article] [PubMed]
  8. Kwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett.20, 738–742.
  9. Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett.17, 5462–5464. [DOI] [PubMed]
  10. Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem.51, 1201–1207. [DOI] [PubMed]
  11. Park, J. S., Kim, D. H., Lee, J. K., Lee, J. Y., Kim, D. H., Kim, H. K., Lee, H. J. & Kim, H. C. (2010). Bioorg. Med. Chem. Lett.20, 1162–1164.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sung, C. K. & Samyang Genex. (2001). US Patent WO 01/41778.
  14. Yi, W., Cao, R. H., Chen, Z. Y. Yu. L. Ma. L. & Song, H. C. (2009). Chem. Pharm. Bull.7, 1273–1277. [DOI] [PubMed]
  15. Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem.45, 639–646. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013796/tk2658sup1.cif

e-66-o1142-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013796/tk2658Isup2.hkl

e-66-o1142-Isup2.hkl (126.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES