Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 28;66(Pt 5):o1192–o1193. doi: 10.1107/S1600536810012900

3-Acetyl-6-chloro-2-methyl-4-phenyl­quinolinium perchlorate

Tara Shahani a, Hoong-Kun Fun a,*,, S Sarveswari b, V Vijayakumar b, B Palakshi Reddy b
PMCID: PMC2979191  PMID: 21579229

Abstract

In the title mol­ecular salt, C18H15ClNO+·ClO4 , the quinolin­ium ring system is approximately planar, with a maximum deviation of 0.027 (1) Å. The dihedral angle formed between the mean planes of the quinolinium ring system and the benzene ring is 78.46 (3)°. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the cations and anions into a three-dimensional network. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For natural products containing quinolines, see: Michael (1997); Morimoto et al. (1991). For the biological activities of quinolines, see: Campbell et al. (1988); Markees et al. (1970). For the physiological activities of quinolines, see: Katritzky & Arend (1998); Jiang & Si (2002). For related structures, see: Shahani et al. (2010); Fun et al. (2009); Loh et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-66-o1192-scheme1.jpg

Experimental

Crystal data

  • C18H15ClNO+·ClO4

  • M r = 396.21

  • Triclinic, Inline graphic

  • a = 7.3862 (1) Å

  • b = 8.8519 (2) Å

  • c = 13.3378 (3) Å

  • α = 92.477 (1)°

  • β = 91.903 (1)°

  • γ = 99.550 (1)°

  • V = 858.44 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.58 × 0.54 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.797, T max = 0.898

  • 27967 measured reflections

  • 7482 independent reflections

  • 6933 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.108

  • S = 1.09

  • 7482 reflections

  • 295 parameters

  • All H-atom parameters refined

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.00 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012900/hb5397sup1.cif

e-66-o1192-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012900/hb5397Isup2.hkl

e-66-o1192-Isup2.hkl (366KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.832 (18) 1.896 (18) 2.7177 (10) 169 (2)
C3—H3A⋯O2ii 0.955 (16) 2.583 (16) 3.3010 (11) 132.2 (12)
C15—H15A⋯O5 0.951 (16) 2.512 (16) 3.3716 (12) 150.4 (13)
C18—H18B⋯O5iii 0.97 (2) 2.53 (2) 3.3266 (13) 139.5 (14)
C12—H12ACg1iv 0.981 (17) 2.694 (17) 3.5810 (10) 150.6 (13)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

TSH and HKF thank the Universiti Sains Malaysia (USM) for Research University Golden Goose grant No. 1001/PFIZIK/811012. VV is grateful to the DST, India, for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997), and biologically active compounds (Markees et al., 1970 ; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks, due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

In the title compound (Fig. 1), the asymmetric unit consists one perchlorate anion and one 3-acetyl-6-chloro-2-methyl-4-phenlquineline-1-ium cation. The quinolinium ring system (C1/N1/C2–C9) is approximately planar, with a maximum deviation of 0.027 (1) Å at atom C1. The dihedral angle formed between quinolinium ring system and benzene ring (C10–C15) is 78.46 (3)°. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related structures (Shahani et al., 2010; Fun et al., 2009; Loh et al., 2010).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O3, C3—H3A···O2, C15—H15A···O5 and C18—H18B···O5 hydrogen bonds (Table 1) link the molecules into three-dimensional network. This crystal structure is further consolidated by C—H···π interactions involving C10–C15 benzene ring (centroid Cg1).

Experimental

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline and a catalytic amount of nickel chloride in acid medium was refluxed for about an hour and resultant compound was recrystallized from 3:1 ethanol water to yield colourless blocks of (I).

Refinement

All H atoms were located in a difference map and was refined freely. [N—H = 0.829 (19) Å, C—H = 0.76 (2)–1.025 (17) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along a axis. H atoms not involved in intermolecular interactions (dashed lines) are omitted for clarity.

Crystal data

C18H15ClNO+·ClO4 Z = 2
Mr = 396.21 F(000) = 408
Triclinic, P1 Dx = 1.533 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3862 (1) Å Cell parameters from 9929 reflections
b = 8.8519 (2) Å θ = 2.7–35.1°
c = 13.3378 (3) Å µ = 0.41 mm1
α = 92.477 (1)° T = 100 K
β = 91.903 (1)° Block, colourless
γ = 99.550 (1)° 0.58 × 0.54 × 0.27 mm
V = 858.44 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 7482 independent reflections
Radiation source: fine-focus sealed tube 6933 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 35.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.797, Tmax = 0.898 k = −13→14
27967 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2949P] where P = (Fo2 + 2Fc2)/3
7482 reflections (Δ/σ)max < 0.001
295 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −1.00 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.57962 (3) −0.15711 (3) 0.127788 (19) 0.01984 (6)
O1 −0.34868 (10) 0.25202 (9) 0.18488 (6) 0.02125 (14)
N1 −0.06256 (10) −0.06546 (8) 0.35547 (5) 0.01256 (12)
C1 −0.15762 (11) 0.04733 (9) 0.34086 (6) 0.01226 (13)
C2 0.08539 (11) −0.08886 (9) 0.30060 (6) 0.01178 (13)
C3 0.17738 (12) −0.21217 (10) 0.32169 (6) 0.01442 (14)
C4 0.32724 (13) −0.23218 (10) 0.26722 (7) 0.01553 (14)
C5 0.38693 (12) −0.12954 (10) 0.19231 (7) 0.01427 (14)
C6 0.29771 (11) −0.01015 (9) 0.16974 (6) 0.01300 (13)
C7 0.14195 (11) 0.01160 (9) 0.22419 (6) 0.01113 (12)
C8 0.03934 (11) 0.13153 (9) 0.20510 (6) 0.01083 (12)
C9 −0.10849 (11) 0.14720 (9) 0.26283 (6) 0.01146 (12)
C10 0.09383 (11) 0.23714 (9) 0.12361 (6) 0.01128 (12)
C11 −0.00355 (12) 0.21724 (10) 0.03113 (6) 0.01471 (14)
C12 0.05201 (13) 0.31380 (11) −0.04601 (7) 0.01646 (15)
C13 0.20163 (13) 0.43138 (10) −0.03026 (7) 0.01619 (15)
C14 0.29697 (13) 0.45204 (10) 0.06228 (7) 0.01649 (15)
C15 0.24533 (12) 0.35437 (10) 0.13932 (6) 0.01454 (14)
C16 −0.21861 (12) 0.27461 (10) 0.24424 (6) 0.01340 (13)
C17 −0.15358 (17) 0.42459 (12) 0.30030 (8) 0.02276 (18)
C18 −0.31035 (13) 0.06418 (11) 0.40871 (7) 0.01699 (15)
H3A 0.137 (2) −0.2799 (18) 0.3733 (12) 0.017 (3)*
H4A 0.394 (3) −0.310 (2) 0.2795 (13) 0.029 (4)*
H6A 0.343 (2) 0.0569 (18) 0.1200 (11) 0.016 (3)*
H11A −0.117 (2) 0.1334 (19) 0.0189 (12) 0.022 (4)*
H12A −0.013 (2) 0.2955 (19) −0.1119 (13) 0.023 (4)*
H13A 0.239 (2) 0.5034 (19) −0.0772 (12) 0.021 (4)*
H14A 0.394 (2) 0.5305 (19) 0.0737 (12) 0.021 (4)*
H15A 0.306 (2) 0.3656 (18) 0.2039 (12) 0.020 (4)*
H17A −0.033 (3) 0.460 (2) 0.2780 (14) 0.031 (4)*
H17B −0.242 (3) 0.488 (2) 0.2843 (15) 0.037 (5)*
H17C −0.153 (3) 0.418 (3) 0.3570 (18) 0.045 (6)*
H18A −0.281 (3) 0.154 (3) 0.4486 (16) 0.042 (5)*
H18B −0.424 (3) 0.078 (2) 0.3754 (14) 0.031 (4)*
H18C −0.334 (3) −0.026 (2) 0.4431 (15) 0.037 (5)*
H1N1 −0.089 (3) −0.121 (2) 0.4034 (14) 0.030 (4)*
Cl2 0.28102 (3) 0.33444 (2) 0.461521 (15) 0.01541 (5)
O2 0.27428 (10) 0.49972 (8) 0.45103 (6) 0.02070 (14)
O3 0.10191 (10) 0.25407 (9) 0.48844 (6) 0.01977 (14)
O4 0.40805 (10) 0.32400 (9) 0.55505 (5) 0.01960 (13)
O5 0.35420 (12) 0.26779 (11) 0.37509 (6) 0.02648 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.01521 (10) 0.01761 (10) 0.02749 (11) 0.00551 (7) 0.00402 (7) −0.00306 (8)
O1 0.0153 (3) 0.0210 (3) 0.0279 (4) 0.0044 (2) −0.0042 (2) 0.0044 (3)
N1 0.0142 (3) 0.0112 (3) 0.0124 (3) 0.0017 (2) 0.0016 (2) 0.0031 (2)
C1 0.0126 (3) 0.0116 (3) 0.0126 (3) 0.0015 (2) 0.0012 (2) 0.0020 (2)
C2 0.0132 (3) 0.0103 (3) 0.0118 (3) 0.0020 (2) −0.0002 (2) 0.0013 (2)
C3 0.0180 (3) 0.0117 (3) 0.0140 (3) 0.0042 (3) −0.0018 (3) 0.0020 (2)
C4 0.0176 (4) 0.0132 (3) 0.0166 (3) 0.0058 (3) −0.0025 (3) 0.0003 (3)
C5 0.0129 (3) 0.0133 (3) 0.0170 (3) 0.0039 (2) −0.0002 (3) −0.0016 (3)
C6 0.0128 (3) 0.0118 (3) 0.0146 (3) 0.0025 (2) 0.0011 (2) 0.0005 (2)
C7 0.0116 (3) 0.0100 (3) 0.0119 (3) 0.0021 (2) 0.0001 (2) 0.0011 (2)
C8 0.0113 (3) 0.0095 (3) 0.0116 (3) 0.0012 (2) 0.0002 (2) 0.0018 (2)
C9 0.0116 (3) 0.0108 (3) 0.0122 (3) 0.0020 (2) 0.0011 (2) 0.0024 (2)
C10 0.0122 (3) 0.0104 (3) 0.0116 (3) 0.0023 (2) 0.0016 (2) 0.0025 (2)
C11 0.0155 (3) 0.0150 (3) 0.0133 (3) 0.0014 (3) −0.0009 (2) 0.0024 (3)
C12 0.0191 (4) 0.0187 (4) 0.0126 (3) 0.0050 (3) 0.0013 (3) 0.0038 (3)
C13 0.0195 (4) 0.0149 (3) 0.0159 (3) 0.0057 (3) 0.0063 (3) 0.0054 (3)
C14 0.0170 (4) 0.0140 (3) 0.0180 (3) −0.0002 (3) 0.0045 (3) 0.0033 (3)
C15 0.0143 (3) 0.0141 (3) 0.0144 (3) −0.0002 (3) 0.0010 (2) 0.0022 (2)
C16 0.0132 (3) 0.0136 (3) 0.0146 (3) 0.0042 (2) 0.0033 (2) 0.0042 (2)
C17 0.0308 (5) 0.0161 (4) 0.0229 (4) 0.0101 (3) −0.0037 (4) −0.0030 (3)
C18 0.0164 (4) 0.0185 (4) 0.0171 (3) 0.0039 (3) 0.0060 (3) 0.0045 (3)
Cl2 0.01584 (9) 0.01583 (9) 0.01397 (9) 0.00038 (6) −0.00013 (6) 0.00351 (6)
O2 0.0187 (3) 0.0142 (3) 0.0297 (4) 0.0028 (2) −0.0018 (3) 0.0094 (2)
O3 0.0148 (3) 0.0220 (3) 0.0209 (3) −0.0037 (2) −0.0018 (2) 0.0106 (2)
O4 0.0200 (3) 0.0196 (3) 0.0181 (3) 0.0001 (2) −0.0077 (2) 0.0070 (2)
O5 0.0264 (4) 0.0343 (4) 0.0192 (3) 0.0083 (3) 0.0016 (3) −0.0065 (3)

Geometric parameters (Å, °)

Cl1—C5 1.7332 (9) C10—C15 1.3976 (12)
O1—C16 1.2090 (11) C11—C12 1.3946 (12)
N1—C1 1.3296 (11) C11—H11A 1.025 (17)
N1—C2 1.3740 (11) C12—C13 1.3903 (14)
N1—H1N1 0.829 (19) C12—H12A 0.981 (17)
C1—C9 1.4123 (11) C13—C14 1.3903 (13)
C1—C18 1.4919 (12) C13—H13A 0.929 (16)
C2—C7 1.4097 (11) C14—C15 1.3936 (12)
C2—C3 1.4115 (12) C14—H14A 0.917 (17)
C3—C4 1.3754 (13) C15—H15A 0.952 (16)
C3—H3A 0.954 (16) C16—C17 1.4937 (14)
C4—C5 1.4117 (13) C17—H17A 0.956 (19)
C4—H4A 0.926 (19) C17—H17B 0.95 (2)
C5—C6 1.3738 (12) C17—H17C 0.76 (2)
C6—C7 1.4159 (11) C18—H18A 0.93 (2)
C6—H6A 0.942 (15) C18—H18B 0.963 (19)
C7—C8 1.4295 (11) C18—H18C 0.93 (2)
C8—C9 1.3788 (11) Cl2—O5 1.4344 (8)
C8—C10 1.4864 (11) Cl2—O3 1.4583 (7)
C9—C16 1.5200 (12) Cl2—O2 1.4846 (7)
C10—C11 1.3965 (11) Cl2—O4 1.5512 (7)
C1—N1—C2 123.82 (7) C10—C11—H11A 121.2 (9)
C1—N1—H1N1 118.1 (13) C13—C12—C11 120.12 (8)
C2—N1—H1N1 117.9 (13) C13—C12—H12A 120.6 (10)
N1—C1—C9 118.77 (7) C11—C12—H12A 119.3 (10)
N1—C1—C18 118.45 (7) C12—C13—C14 119.96 (8)
C9—C1—C18 122.77 (8) C12—C13—H13A 123.8 (10)
N1—C2—C7 118.94 (7) C14—C13—H13A 116.1 (10)
N1—C2—C3 119.61 (7) C13—C14—C15 120.52 (8)
C7—C2—C3 121.45 (8) C13—C14—H14A 120.5 (10)
C4—C3—C2 118.80 (8) C15—C14—H14A 119.0 (10)
C4—C3—H3A 120.4 (10) C14—C15—C10 119.40 (8)
C2—C3—H3A 120.8 (10) C14—C15—H15A 123.0 (10)
C3—C4—C5 119.88 (8) C10—C15—H15A 117.5 (10)
C3—C4—H4A 121.9 (11) O1—C16—C17 123.74 (8)
C5—C4—H4A 118.2 (11) O1—C16—C9 119.76 (8)
C6—C5—C4 122.16 (8) C17—C16—C9 116.48 (8)
C6—C5—Cl1 119.75 (7) C16—C17—H17A 106.1 (11)
C4—C5—Cl1 118.09 (7) C16—C17—H17B 105.6 (12)
C5—C6—C7 118.88 (8) H17A—C17—H17B 114.6 (16)
C5—C6—H6A 119.5 (10) C16—C17—H17C 112.6 (17)
C7—C6—H6A 121.6 (10) H17A—C17—H17C 111 (2)
C2—C7—C6 118.79 (7) H17B—C17—H17C 107 (2)
C2—C7—C8 118.43 (7) C1—C18—H18A 110.3 (13)
C6—C7—C8 122.77 (7) C1—C18—H18B 115.2 (11)
C9—C8—C7 119.31 (7) H18A—C18—H18B 101.8 (17)
C9—C8—C10 121.17 (7) C1—C18—H18C 106.8 (13)
C7—C8—C10 119.52 (7) H18A—C18—H18C 115.6 (17)
C8—C9—C1 120.67 (7) H18B—C18—H18C 107.4 (16)
C8—C9—C16 120.14 (7) O5—Cl2—O3 114.23 (5)
C1—C9—C16 119.18 (7) O5—Cl2—O2 111.92 (5)
C11—C10—C15 120.21 (7) O3—Cl2—O2 110.06 (5)
C11—C10—C8 120.13 (7) O5—Cl2—O4 109.31 (5)
C15—C10—C8 119.65 (7) O3—Cl2—O4 104.17 (4)
C12—C11—C10 119.78 (8) O2—Cl2—O4 106.60 (4)
C12—C11—H11A 119.0 (9)
C2—N1—C1—C9 1.85 (12) C7—C8—C9—C16 179.58 (7)
C2—N1—C1—C18 −177.33 (8) C10—C8—C9—C16 −0.34 (12)
C1—N1—C2—C7 0.14 (12) N1—C1—C9—C8 −2.26 (12)
C1—N1—C2—C3 −179.90 (8) C18—C1—C9—C8 176.88 (8)
N1—C2—C3—C4 −178.83 (8) N1—C1—C9—C16 178.84 (7)
C7—C2—C3—C4 1.12 (13) C18—C1—C9—C16 −2.01 (12)
C2—C3—C4—C5 0.44 (13) C9—C8—C10—C11 −78.54 (10)
C3—C4—C5—C6 −1.37 (13) C7—C8—C10—C11 101.54 (10)
C3—C4—C5—Cl1 178.54 (7) C9—C8—C10—C15 102.80 (10)
C4—C5—C6—C7 0.70 (13) C7—C8—C10—C15 −77.12 (10)
Cl1—C5—C6—C7 −179.20 (6) C15—C10—C11—C12 0.67 (13)
N1—C2—C7—C6 178.19 (7) C8—C10—C11—C12 −177.97 (8)
C3—C2—C7—C6 −1.77 (12) C10—C11—C12—C13 −1.27 (14)
N1—C2—C7—C8 −1.72 (11) C11—C12—C13—C14 0.51 (14)
C3—C2—C7—C8 178.32 (7) C12—C13—C14—C15 0.86 (14)
C5—C6—C7—C2 0.84 (12) C13—C14—C15—C10 −1.44 (14)
C5—C6—C7—C8 −179.25 (8) C11—C10—C15—C14 0.67 (13)
C2—C7—C8—C9 1.28 (11) C8—C10—C15—C14 179.32 (8)
C6—C7—C8—C9 −178.63 (7) C8—C9—C16—O1 89.51 (11)
C2—C7—C8—C10 −178.80 (7) C1—C9—C16—O1 −91.59 (10)
C6—C7—C8—C10 1.30 (12) C8—C9—C16—C17 −88.92 (10)
C7—C8—C9—C1 0.70 (12) C1—C9—C16—C17 89.98 (10)
C10—C8—C9—C1 −179.22 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3i 0.832 (18) 1.896 (18) 2.7177 (10) 169 (2)
C3—H3A···O2ii 0.955 (16) 2.583 (16) 3.3010 (11) 132.2 (12)
C15—H15A···O5 0.951 (16) 2.512 (16) 3.3716 (12) 150.4 (13)
C18—H18B···O5iii 0.97 (2) 2.53 (2) 3.3266 (13) 139.5 (14)
C12—H12A···Cg1iv 0.981 (17) 2.694 (17) 3.5810 (10) 150.6 (13)

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y−1, z; (iii) x−1, y, z; (iv) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5397).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689. [DOI] [PMC free article] [PubMed]
  6. Jiang, B. & Si, Y. G. (2002). J. Org. Chem.67, 9449–9451. [DOI] [PubMed]
  7. Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem.63, 9989–9991.
  8. Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o91–o92. [DOI] [PMC free article] [PubMed]
  9. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [DOI] [PubMed]
  10. Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  11. Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374. [DOI] [PMC free article] [PubMed]
  12. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012900/hb5397sup1.cif

e-66-o1192-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012900/hb5397Isup2.hkl

e-66-o1192-Isup2.hkl (366KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES