Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):m537–m538. doi: 10.1107/S1600536810013681

Bis(1-ammonio­ethane-1,1-diyl­diphos­phonato-κ2 O,O′)diaqua­cobalt(II) nona­hydrate

Vladimir V Bon a, Anatolij V Dudko a, Alexandra N Kozachkova a, Vasily I Pekhnyo a, Natalia V Tsaryk a,*
PMCID: PMC2979193  PMID: 21579029

Abstract

In the title compound, [Co(C2H8NO6P2)2(H2O)2]·9H2O, the CoII atom has a slightly distorted octa­hedral coordination environment consisting of four deprotonated phospho­nate O atoms of two independent 1-amino­ethyl­idendiphospho­nate anions and complemented by the O atoms of two water mol­ecules in cis positions. The anions exists in the zwitterionic form (protonated amino group and two deprotonated phospho­nate O atoms) and constitute two six-membered chelate rings. The crystal structure also contains nine partly disordered uncoordinated water mol­ecules, which create an extensive three-dimensional network of strong O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For general background to organic diphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005). For applications of transition metal bis­phospho­nates, see: Eberhardt et al. (2005). For related structures, see: Xiang et al. (2007); Yin et al. (2005); Dudko et al. (2009).graphic file with name e-66-0m537-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H8NO6P2)2(H2O)2]·9H2O

  • M r = 665.17

  • Monoclinic, Inline graphic

  • a = 15.1925 (3) Å

  • b = 13.2046 (2) Å

  • c = 12.9688 (2) Å

  • β = 106.0866 (11)°

  • V = 2499.81 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 173 K

  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker APEX-II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.749, T max = 0.820

  • 51914 measured reflections

  • 6273 independent reflections

  • 5626 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.090

  • S = 1.12

  • 6273 reflections

  • 401 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013681/wm2322sup1.cif

e-66-0m537-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013681/wm2322Isup2.hkl

e-66-0m537-Isup2.hkl (307.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O7 2.0697 (14)
Co1—O13 2.0747 (17)
Co1—O10 2.0771 (15)
Co1—O14 2.0837 (16)
Co1—O1 2.1007 (15)
Co1—O4 2.1201 (15)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O17 0.86 (3) 2.00 (3) 2.836 (3) 165 (3)
N1—H12N⋯O7 0.81 (3) 1.98 (3) 2.785 (2) 175 (3)
N1—H13N⋯O15i 0.85 (3) 1.98 (3) 2.810 (2) 165 (3)
N2—H21N⋯O23A 0.91 (3) 1.94 (3) 2.808 (4) 159 (3)
N2—H22N⋯O4 0.90 (3) 2.05 (3) 2.944 (2) 173 (3)
N2—H23N⋯O16 0.90 (3) 1.90 (3) 2.783 (3) 164 (3)
O3—H3O⋯O6ii 0.66 (3) 1.92 (3) 2.570 (2) 169 (4)
O5—H5O⋯O2i 0.76 (3) 1.84 (3) 2.592 (2) 170 (3)
O8—H8O⋯O11iii 0.70 (3) 1.81 (3) 2.508 (2) 169 (3)
O12—H12O⋯O9iv 0.83 (3) 1.71 (3) 2.517 (2) 165 (3)
O13—H131⋯O6ii 0.79 (3) 1.92 (3) 2.691 (2) 166 (3)
O13—H132⋯O20A 0.77 (3) 1.92 (3) 2.671 (3) 165 (3)
O14—H141⋯O18Av 0.82 (3) 1.91 (3) 2.697 (3) 163 (3)
O14—H142⋯O9iv 0.74 (3) 1.95 (3) 2.688 (2) 172 (3)
O15—H151⋯O1 0.80 (3) 2.01 (3) 2.803 (2) 177 (3)
O15—H152⋯O14 0.66 (3) 2.50 (3) 2.946 (2) 127 (3)
O15—H152⋯O12iv 0.66 (3) 2.54 (3) 3.049 (2) 136 (3)
O16—H161⋯O15i 0.85 (4) 1.94 (4) 2.788 (3) 176 (3)
O16—H162⋯O17i 0.89 (4) 1.97 (4) 2.844 (3) 170 (3)
O17—H171⋯O21vi 0.75 (3) 2.14 (4) 2.795 (3) 147 (3)
O17—H172⋯O18Avii 0.73 (4) 2.13 (4) 2.845 (3) 167 (4)
O19—H191⋯O13 0.84 (4) 2.27 (4) 3.063 (3) 158 (3)
O19—H192⋯O2v 0.75 (4) 2.04 (4) 2.773 (3) 166 (4)
O21—H211⋯O19 0.80 (4) 2.05 (4) 2.815 (3) 162 (4)
O21—H212⋯O19viii 1.00 (4) 1.93 (4) 2.914 (3) 169 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

supplementary crystallographic information

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect, a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activities.

Several structures of CoII aminoethylidenediphosphonates have been reported previously (Xiang et al. 2007; Yin et al. 2005). The main difference between these structures and the title compound is the presence of two water molecules instead of a 1,10-phenanthroline ligand in the coordination environment of the transition metal ion (Xiang et al. 2007), leading also to a different symmetry.

The asymmetric unit of the title compound contains one molecule of the complex (Fig.1). Two 1-aminoethylidendiphosphonate anions chelate the central metal ion via two oxygen atoms from phosphonate groups forming six-membered non-planar metalla rings. Two water molecules complement the slightly distorted octahedral coordination environment of Co in cis-position. The Co—O bond lengths have expected values and conform with the previously reported related structures (Xiang et al., 2007). The values of the O—Co—O angles are in the range from 89.23 (7)° to 91.54 (5)°. The Co1—O1—P1—C1—P2—O4 and Co1—O7—P3—C3—P4—O10 metalla cycles have an envelope conformation with the C1 and C3 atoms out of plane by 0.850 (2) Å and 0.795 (2) Å, respectively. The dihedral angle between the planar fragments Co1—O1—P1—P2—O4 and Co1—O7—P3—P4—O10 is 84.20 (3)°. The coordinated ligand molecules exists in the zwitterionic form with a proton transfer from one of the phosphonic groups to the amino group which is representative for all 1-aminodiphosphonic acids. In addition, the amino group does also not participate in coordination (Dudko et al. 2009).

In the crystal structure of the title compound, nine solvent water molecules are present. Such an amount of solvent molecules could be explained by the presence of two coordinated water molecules in addition to the more hydrophilic phosphonate groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O hydrogen bonds is observed in the structure (Fig. 2; Table 1). Several H-bonds can not be unambiguously derived from the model because some of the crystal lattice water molecules are disordered.

Experimental

Light pink crystals of the title compound were obtained from the mixture of 10 ml (10 -2 mol/l) water solution of Co(NO3)2 with 20 ml (10 -2 mol/l) solution of 1-aminoethylidendiphosphonic acid. The combined solution was stored in a dark place for slow evaporation. After 20 days of staying, suitable crystals for X-ray data collection were obtained.

Refinement

In the crystal structure of the title compound, O atoms O18 and O20 are disordered over two sites with occupancies 0.87/0.13. Disordered O atoms O22 and O23 were treated with occupancies 0.88/0.12 and 0.71/0.29, respectively. The major component of the disordered site was refined anisotropically, the corresponding minor occupied sites were refined isotropically. Hydrogen atoms bonded to the disordered oxygen atoms could not be located from difference Fourier maps and were eventually omitted from refinement. Other H atoms bonded to N and O atoms were located in a difference map and refined freely with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(O), respectively. Methyl hydrogens atoms were positioned geometrically and were refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Solvent water molecules are omitted for clarity.

Fig. 2.

Fig. 2.

Crystal packing of title compound, in a projection along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Co(C2H8NO6P2)2(H2O)2]·9H2O F(000) = 1388
Mr = 665.17 Dx = 1.767 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9983 reflections
a = 15.1925 (3) Å θ = 2.3–28.4°
b = 13.2046 (2) Å µ = 1.04 mm1
c = 12.9688 (2) Å T = 173 K
β = 106.0866 (11)° Block, light pink
V = 2499.81 (7) Å3 0.30 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEX-II CCD diffractometer 6273 independent reflections
Radiation source: fine-focus sealed tube 5626 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 8.33 pixels mm-1 θmax = 28.4°, θmin = 1.4°
φ and ω scans h = −19→20
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −17→17
Tmin = 0.749, Tmax = 0.820 l = −17→17
51914 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0396P)2 + 3.3375P] where P = (Fo2 + 2Fc2)/3
6273 reflections (Δ/σ)max = 0.001
401 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.255576 (18) 0.49258 (2) 0.52538 (2) 0.01238 (8)
P1 0.40125 (3) 0.68696 (4) 0.57579 (4) 0.01281 (11)
P2 0.37271 (3) 0.58209 (4) 0.35868 (4) 0.01196 (11)
P3 0.06525 (3) 0.58713 (4) 0.36181 (4) 0.01226 (11)
P4 0.08900 (3) 0.35638 (4) 0.36325 (4) 0.01415 (11)
C1 0.36957 (13) 0.70306 (15) 0.42887 (16) 0.0131 (4)
C2 0.43053 (15) 0.78295 (17) 0.39660 (17) 0.0188 (4)
H21C 0.4116 0.7914 0.3185 0.028*
H22C 0.4946 0.7608 0.4198 0.028*
H23C 0.4243 0.8477 0.4309 0.028*
C3 0.06352 (13) 0.47197 (16) 0.28100 (16) 0.0141 (4)
C4 −0.02844 (14) 0.46254 (19) 0.19417 (17) 0.0204 (4)
H41C −0.0374 0.5219 0.1470 0.031*
H42C −0.0784 0.4586 0.2283 0.031*
H43C −0.0282 0.4011 0.1518 0.031*
N1 0.27212 (12) 0.74065 (14) 0.39596 (15) 0.0142 (3)
H11N 0.2720 (19) 0.799 (2) 0.426 (2) 0.021*
H12N 0.237 (2) 0.701 (2) 0.412 (2) 0.021*
H13N 0.2560 (19) 0.749 (2) 0.328 (2) 0.021*
N2 0.13796 (12) 0.48190 (15) 0.22493 (15) 0.0165 (3)
H21N 0.1347 (19) 0.429 (2) 0.179 (2) 0.025*
H22N 0.193 (2) 0.486 (2) 0.273 (2) 0.025*
H23N 0.128 (2) 0.538 (2) 0.183 (2) 0.025*
O1 0.33239 (10) 0.61709 (12) 0.60220 (11) 0.0160 (3)
O2 0.40782 (10) 0.79109 (11) 0.62352 (12) 0.0181 (3)
O3 0.49936 (10) 0.64009 (13) 0.60579 (13) 0.0188 (3)
H3O 0.502 (2) 0.590 (2) 0.605 (2) 0.023*
O4 0.31168 (10) 0.50763 (11) 0.39358 (12) 0.0154 (3)
O5 0.32357 (10) 0.60670 (12) 0.23804 (12) 0.0171 (3)
H5O 0.3517 (19) 0.640 (2) 0.211 (2) 0.020*
O6 0.47085 (10) 0.55160 (12) 0.37641 (12) 0.0178 (3)
O7 0.15729 (9) 0.59446 (11) 0.44381 (11) 0.0151 (3)
O8 0.06089 (11) 0.67523 (12) 0.28140 (13) 0.0191 (3)
H8O 0.017 (2) 0.695 (2) 0.258 (2) 0.023*
O9 −0.01614 (10) 0.58374 (12) 0.40569 (12) 0.0179 (3)
O10 0.17939 (10) 0.37086 (11) 0.44643 (12) 0.0179 (3)
O11 0.08724 (10) 0.26901 (12) 0.28832 (12) 0.0195 (3)
O12 0.00608 (11) 0.34512 (13) 0.41132 (13) 0.0199 (3)
H12O 0.0100 (19) 0.378 (2) 0.467 (2) 0.024*
O13 0.35601 (12) 0.39698 (14) 0.61576 (15) 0.0238 (4)
H131 0.407 (2) 0.403 (2) 0.614 (2) 0.029*
H132 0.340 (2) 0.341 (3) 0.611 (2) 0.029*
O14 0.18902 (11) 0.48630 (13) 0.64577 (13) 0.0198 (3)
H141 0.210 (2) 0.456 (2) 0.702 (3) 0.024*
H142 0.140 (2) 0.472 (2) 0.630 (2) 0.024*
O15 0.19611 (13) 0.70714 (14) 0.67947 (14) 0.0234 (4)
H151 0.235 (2) 0.680 (2) 0.660 (2) 0.028*
H152 0.165 (2) 0.671 (3) 0.674 (3) 0.028*
O16 0.10482 (14) 0.62776 (16) 0.06388 (15) 0.0310 (4)
H161 0.130 (2) 0.679 (3) 0.099 (3) 0.037*
H162 0.143 (2) 0.610 (3) 0.026 (3) 0.037*
O17 0.24161 (13) 0.93732 (14) 0.46692 (16) 0.0265 (4)
H171 0.287 (2) 0.949 (3) 0.506 (3) 0.032*
H172 0.229 (2) 0.979 (3) 0.429 (3) 0.032*
O19 0.44927 (14) 0.42724 (16) 0.85539 (17) 0.0329 (4)
H191 0.415 (2) 0.433 (3) 0.793 (3) 0.039*
H192 0.483 (3) 0.385 (3) 0.866 (3) 0.039*
O21 0.60125 (14) 0.55256 (16) 0.94457 (19) 0.0359 (4)
H211 0.559 (3) 0.523 (3) 0.907 (3) 0.043*
H212 0.590 (2) 0.567 (3) 1.015 (3) 0.043*
O18A 0.77849 (14) 0.88751 (17) 0.66533 (16) 0.0234 (8) 0.873 (11)
O20A 0.3072 (2) 0.20567 (19) 0.6380 (3) 0.0415 (11) 0.869 (14)
O22A 0.67469 (18) 0.7176 (2) 0.6366 (4) 0.0409 (12) 0.876 (13)
O23A 0.1129 (3) 0.3552 (6) 0.0452 (6) 0.0420 (16) 0.71 (3)
O18B 0.747 (3) 0.840 (3) 0.668 (3) 0.101 (12)* 0.127 (11)
O20B 0.350 (3) 0.197 (2) 0.684 (3) 0.076 (10)* 0.131 (14)
O22B 0.6582 (15) 0.7397 (17) 0.579 (3) 0.042 (6)* 0.124 (13)
O23B 0.1074 (8) 0.3242 (16) 0.0717 (14) 0.048 (3)* 0.29 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01106 (13) 0.01304 (14) 0.01351 (13) −0.00105 (9) 0.00416 (10) 0.00019 (10)
P1 0.0123 (2) 0.0130 (2) 0.0135 (2) −0.00120 (18) 0.00427 (18) −0.00135 (18)
P2 0.0114 (2) 0.0119 (2) 0.0137 (2) −0.00023 (17) 0.00541 (17) −0.00051 (18)
P3 0.0101 (2) 0.0140 (2) 0.0133 (2) 0.00027 (17) 0.00432 (17) 0.00080 (18)
P4 0.0142 (2) 0.0133 (2) 0.0157 (2) −0.00344 (18) 0.00540 (18) −0.00208 (19)
C1 0.0119 (8) 0.0131 (9) 0.0154 (9) −0.0009 (7) 0.0056 (7) −0.0006 (7)
C2 0.0221 (10) 0.0161 (10) 0.0206 (10) −0.0057 (8) 0.0102 (8) −0.0005 (8)
C3 0.0121 (8) 0.0177 (10) 0.0135 (8) −0.0022 (7) 0.0053 (7) −0.0013 (7)
C4 0.0162 (9) 0.0272 (12) 0.0164 (9) −0.0025 (8) 0.0020 (8) −0.0024 (9)
N1 0.0146 (8) 0.0126 (9) 0.0157 (8) 0.0005 (6) 0.0049 (6) 0.0004 (7)
N2 0.0154 (8) 0.0186 (9) 0.0169 (8) −0.0017 (7) 0.0064 (7) −0.0012 (7)
O1 0.0161 (7) 0.0180 (7) 0.0150 (7) −0.0036 (6) 0.0062 (5) −0.0009 (6)
O2 0.0222 (7) 0.0143 (7) 0.0193 (7) −0.0018 (6) 0.0083 (6) −0.0045 (6)
O3 0.0143 (7) 0.0166 (7) 0.0246 (8) 0.0010 (6) 0.0038 (6) −0.0001 (7)
O4 0.0170 (7) 0.0132 (7) 0.0189 (7) −0.0030 (5) 0.0095 (6) −0.0016 (5)
O5 0.0183 (7) 0.0189 (8) 0.0143 (7) −0.0020 (6) 0.0050 (5) 0.0013 (6)
O6 0.0125 (6) 0.0175 (7) 0.0249 (7) 0.0006 (6) 0.0078 (6) −0.0010 (6)
O7 0.0119 (6) 0.0145 (7) 0.0177 (7) 0.0005 (5) 0.0020 (5) −0.0005 (6)
O8 0.0159 (7) 0.0200 (8) 0.0223 (8) 0.0043 (6) 0.0068 (6) 0.0073 (6)
O9 0.0135 (7) 0.0236 (8) 0.0192 (7) −0.0022 (6) 0.0088 (6) −0.0036 (6)
O10 0.0184 (7) 0.0147 (7) 0.0188 (7) −0.0015 (6) 0.0024 (6) −0.0002 (6)
O11 0.0185 (7) 0.0187 (8) 0.0221 (7) −0.0035 (6) 0.0070 (6) −0.0068 (6)
O12 0.0206 (7) 0.0221 (8) 0.0204 (7) −0.0081 (6) 0.0112 (6) −0.0056 (6)
O13 0.0156 (7) 0.0193 (8) 0.0364 (9) −0.0003 (6) 0.0071 (7) 0.0082 (7)
O14 0.0145 (7) 0.0269 (9) 0.0186 (8) −0.0058 (6) 0.0054 (6) 0.0001 (6)
O15 0.0258 (9) 0.0214 (9) 0.0252 (8) −0.0049 (7) 0.0108 (7) −0.0066 (7)
O16 0.0389 (10) 0.0333 (10) 0.0234 (8) −0.0088 (8) 0.0127 (8) −0.0040 (8)
O17 0.0268 (9) 0.0222 (9) 0.0283 (9) 0.0019 (7) 0.0036 (7) −0.0002 (7)
O19 0.0286 (9) 0.0351 (11) 0.0330 (10) 0.0094 (8) 0.0052 (8) −0.0034 (8)
O21 0.0277 (10) 0.0321 (11) 0.0470 (12) 0.0015 (8) 0.0086 (9) −0.0061 (9)
O18A 0.0236 (11) 0.0192 (12) 0.0270 (11) −0.0037 (8) 0.0064 (8) −0.0031 (8)
O20A 0.0413 (19) 0.0277 (14) 0.055 (2) −0.0005 (10) 0.0119 (15) 0.0096 (11)
O22A 0.0299 (13) 0.0307 (14) 0.064 (3) −0.0050 (10) 0.0168 (13) −0.0156 (15)
O23A 0.063 (2) 0.034 (3) 0.032 (2) −0.0083 (17) 0.0194 (16) −0.0152 (19)

Geometric parameters (Å, °)

Co1—O7 2.0697 (14) C3—C4 1.537 (3)
Co1—O13 2.0747 (17) C4—H41C 0.9800
Co1—O10 2.0771 (15) C4—H42C 0.9800
Co1—O14 2.0837 (16) C4—H43C 0.9800
Co1—O1 2.1007 (15) N1—H11N 0.86 (3)
Co1—O4 2.1201 (15) N1—H12N 0.81 (3)
P1—O2 1.4999 (15) N1—H13N 0.85 (3)
P1—O1 1.5039 (15) N2—H21N 0.91 (3)
P1—O3 1.5604 (16) N2—H22N 0.90 (3)
P1—C1 1.844 (2) N2—H23N 0.90 (3)
P2—O6 1.4993 (15) O3—H3O 0.66 (3)
P2—O4 1.5047 (15) O5—H5O 0.76 (3)
P2—O5 1.5696 (15) O8—H8O 0.70 (3)
P2—C1 1.846 (2) O12—H12O 0.83 (3)
P3—O9 1.4982 (15) O13—H131 0.79 (3)
P3—O7 1.5071 (14) O13—H132 0.77 (3)
P3—O8 1.5515 (16) O14—H141 0.82 (3)
P3—C3 1.843 (2) O14—H142 0.74 (3)
P4—O11 1.5038 (16) O15—H151 0.80 (3)
P4—O10 1.5050 (15) O15—H152 0.66 (3)
P4—O12 1.5599 (16) O16—H161 0.85 (4)
P4—C3 1.841 (2) O16—H162 0.89 (4)
C1—N1 1.507 (3) O17—H171 0.75 (3)
C1—C2 1.536 (3) O17—H172 0.73 (4)
C2—H21C 0.9800 O19—H191 0.84 (4)
C2—H22C 0.9800 O19—H192 0.75 (4)
C2—H23C 0.9800 O21—H211 0.80 (4)
C3—N2 1.510 (3) O21—H212 1.00 (4)
O7—Co1—O13 176.20 (7) H21C—C2—H22C 109.5
O7—Co1—O10 91.52 (6) C1—C2—H23C 109.5
O13—Co1—O10 91.71 (7) H21C—C2—H23C 109.5
O7—Co1—O14 88.73 (6) H22C—C2—H23C 109.5
O13—Co1—O14 89.20 (7) N2—C3—C4 107.71 (16)
O10—Co1—O14 91.08 (6) N2—C3—P4 106.60 (14)
O7—Co1—O1 87.76 (6) C4—C3—P4 111.09 (15)
O13—Co1—O1 89.05 (7) N2—C3—P3 107.91 (14)
O10—Co1—O1 178.83 (6) C4—C3—P3 110.50 (15)
O14—Co1—O1 89.83 (6) P4—C3—P3 112.77 (10)
O7—Co1—O4 85.48 (6) C3—C4—H41C 109.5
O13—Co1—O4 96.63 (7) C3—C4—H42C 109.5
O10—Co1—O4 88.21 (6) H41C—C4—H42C 109.5
O14—Co1—O4 174.14 (6) C3—C4—H43C 109.5
O1—Co1—O4 90.82 (6) H41C—C4—H43C 109.5
O2—P1—O1 116.06 (9) H42C—C4—H43C 109.5
O2—P1—O3 108.12 (9) C1—N1—H11N 106.9 (18)
O1—P1—O3 112.13 (9) C1—N1—H12N 112 (2)
O2—P1—C1 106.81 (9) H11N—N1—H12N 112 (3)
O1—P1—C1 107.89 (9) C1—N1—H13N 108.4 (19)
O3—P1—C1 105.14 (9) H11N—N1—H13N 108 (3)
O6—P2—O4 116.61 (9) H12N—N1—H13N 109 (3)
O6—P2—O5 112.75 (9) C3—N2—H21N 109.5 (18)
O4—P2—O5 105.82 (9) C3—N2—H22N 110.4 (19)
O6—P2—C1 108.50 (9) H21N—N2—H22N 112 (3)
O4—P2—C1 108.35 (9) C3—N2—H23N 110.0 (18)
O5—P2—C1 104.02 (9) H21N—N2—H23N 106 (3)
O9—P3—O7 115.85 (9) H22N—N2—H23N 109 (3)
O9—P3—O8 113.06 (9) P1—O1—Co1 134.61 (9)
O7—P3—O8 106.53 (9) P1—O3—H3O 116 (3)
O9—P3—C3 107.95 (9) P2—O4—Co1 136.28 (9)
O7—P3—C3 108.57 (9) P2—O5—H5O 114 (2)
O8—P3—C3 104.19 (9) P3—O7—Co1 135.71 (9)
O11—P4—O10 114.20 (9) P3—O8—H8O 115 (3)
O11—P4—O12 108.26 (9) P4—O10—Co1 136.45 (10)
O10—P4—O12 113.78 (9) P4—O12—H12O 115 (2)
O11—P4—C3 107.37 (9) Co1—O13—H131 120 (2)
O10—P4—C3 108.28 (9) Co1—O13—H132 112 (2)
O12—P4—C3 104.31 (9) H131—O13—H132 112 (3)
N1—C1—C2 108.41 (17) Co1—O14—H141 123 (2)
N1—C1—P1 106.58 (13) Co1—O14—H142 117 (2)
C2—C1—P1 110.87 (14) H141—O14—H142 104 (3)
N1—C1—P2 107.64 (13) H151—O15—H152 102 (4)
C2—C1—P2 111.10 (14) H161—O16—H162 104 (3)
P1—C1—P2 112.02 (11) H171—O17—H172 109 (4)
C1—C2—H21C 109.5 H191—O19—H192 117 (4)
C1—C2—H22C 109.5 H211—O21—H212 110 (3)
O2—P1—C1—N1 −69.60 (15) O8—P3—C3—C4 −65.37 (16)
O1—P1—C1—N1 55.84 (15) O9—P3—C3—P4 −69.94 (12)
O3—P1—C1—N1 175.67 (13) O7—P3—C3—P4 56.38 (12)
O2—P1—C1—C2 48.19 (16) O8—P3—C3—P4 169.62 (10)
O1—P1—C1—C2 173.63 (14) O2—P1—O1—Co1 152.91 (11)
O3—P1—C1—C2 −66.54 (16) O3—P1—O1—Co1 −82.16 (14)
O2—P1—C1—P2 172.92 (9) C1—P1—O1—Co1 33.15 (15)
O1—P1—C1—P2 −61.64 (12) O7—Co1—O1—P1 −86.87 (13)
O3—P1—C1—P2 58.19 (12) O13—Co1—O1—P1 95.20 (13)
O6—P2—C1—N1 171.19 (13) O14—Co1—O1—P1 −175.60 (13)
O4—P2—C1—N1 −61.33 (15) O4—Co1—O1—P1 −1.42 (13)
O5—P2—C1—N1 50.94 (15) O6—P2—O4—Co1 102.36 (14)
O6—P2—C1—C2 52.64 (16) O5—P2—O4—Co1 −131.38 (13)
O4—P2—C1—C2 −179.87 (14) C1—P2—O4—Co1 −20.33 (16)
O5—P2—C1—C2 −67.61 (15) O7—Co1—O4—P2 81.31 (13)
O6—P2—C1—P1 −71.96 (12) O13—Co1—O4—P2 −95.52 (14)
O4—P2—C1—P1 55.52 (12) O10—Co1—O4—P2 172.97 (14)
O5—P2—C1—P1 167.78 (10) O1—Co1—O4—P2 −6.38 (14)
O11—P4—C3—N2 −60.67 (15) O9—P3—O7—Co1 92.63 (14)
O10—P4—C3—N2 63.09 (15) O8—P3—O7—Co1 −140.66 (12)
O12—P4—C3—N2 −175.41 (13) C3—P3—O7—Co1 −28.97 (15)
O11—P4—C3—C4 56.41 (16) O10—Co1—O7—P3 1.53 (13)
O10—P4—C3—C4 −179.83 (14) O14—Co1—O7—P3 −89.51 (13)
O12—P4—C3—C4 −58.34 (16) O1—Co1—O7—P3 −179.38 (13)
O11—P4—C3—P3 −178.91 (10) O4—Co1—O7—P3 89.61 (13)
O10—P4—C3—P3 −55.15 (12) O11—P4—O10—Co1 146.29 (12)
O12—P4—C3—P3 66.35 (12) O12—P4—O10—Co1 −88.72 (15)
O9—P3—C3—N2 172.59 (13) C3—P4—O10—Co1 26.74 (16)
O7—P3—C3—N2 −61.09 (15) O7—Co1—O10—P4 −0.20 (14)
O8—P3—C3—N2 52.15 (15) O13—Co1—O10—P4 177.79 (14)
O9—P3—C3—C4 55.06 (16) O14—Co1—O10—P4 88.55 (14)
O7—P3—C3—C4 −178.61 (14) O4—Co1—O10—P4 −85.63 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11N···O17 0.86 (3) 2.00 (3) 2.836 (3) 165 (3)
N1—H12N···O7 0.81 (3) 1.98 (3) 2.785 (2) 175 (3)
N1—H13N···O15i 0.85 (3) 1.98 (3) 2.810 (2) 165 (3)
N2—H21N···O23A 0.91 (3) 1.94 (3) 2.808 (4) 159 (3)
N2—H22N···O4 0.90 (3) 2.05 (3) 2.944 (2) 173 (3)
N2—H23N···O16 0.90 (3) 1.90 (3) 2.783 (3) 164 (3)
O3—H3O···O6ii 0.66 (3) 1.92 (3) 2.570 (2) 169 (4)
O5—H5O···O2i 0.76 (3) 1.84 (3) 2.592 (2) 170 (3)
O8—H8O···O11iii 0.70 (3) 1.81 (3) 2.508 (2) 169 (3)
O12—H12O···O9iv 0.83 (3) 1.71 (3) 2.517 (2) 165 (3)
O13—H131···O6ii 0.79 (3) 1.92 (3) 2.691 (2) 166 (3)
O13—H132···O20A 0.77 (3) 1.92 (3) 2.671 (3) 165 (3)
O14—H141···O18Av 0.82 (3) 1.91 (3) 2.697 (3) 163 (3)
O14—H142···O9iv 0.74 (3) 1.95 (3) 2.688 (2) 172 (3)
O15—H151···O1 0.80 (3) 2.01 (3) 2.803 (2) 177 (3)
O15—H152···O14 0.66 (3) 2.50 (3) 2.946 (2) 127 (3)
O15—H152···O12iv 0.66 (3) 2.54 (3) 3.049 (2) 136 (3)
O16—H161···O15i 0.85 (4) 1.94 (4) 2.788 (3) 176 (3)
O16—H162···O17i 0.89 (4) 1.97 (4) 2.844 (3) 170 (3)
O17—H171···O21vi 0.75 (3) 2.14 (4) 2.795 (3) 147 (3)
O17—H172···O18Avii 0.73 (4) 2.13 (4) 2.845 (3) 167 (4)
O19—H191···O13 0.84 (4) 2.27 (4) 3.063 (3) 158 (3)
O19—H192···O2v 0.75 (4) 2.04 (4) 2.773 (3) 166 (4)
O21—H211···O19 0.80 (4) 2.05 (4) 2.815 (3) 162 (4)
O21—H212···O19viii 1.00 (4) 1.93 (4) 2.914 (3) 169 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y−1/2, −z+3/2; (vi) −x+1, y+1/2, −z+3/2; (vii) −x+1, −y+2, −z+1; (viii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2322).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459. [DOI] [PMC free article] [PubMed]
  3. Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci.10, 622–626. [DOI] [PubMed]
  4. Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2009). publCIF. In preparation.
  7. Xiang, J., Li, M., Wu, S., Yuan, L.-J. & Sun, J. (2007). J. Mol. Struct.826, 143–149.
  8. Yin, P., Wang, X.-C., Gao, S. & Zheng, L.-M. (2005). J. Solid State Chem.178, 1049–1053.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013681/wm2322sup1.cif

e-66-0m537-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013681/wm2322Isup2.hkl

e-66-0m537-Isup2.hkl (307.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES