Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1090. doi: 10.1107/S1600536810013504

N-(3,5-Dichloro­phen­yl)-2,4-dimethyl­benzene­sulfonamide

P G Nirmala a, B Thimme Gowda a,*, Sabine Foro b, Hartmut Fuess b
PMCID: PMC2979206  PMID: 21579143

Abstract

In the crystal structure of the title compound, C14H13Cl2NO2S, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. The mol­ecule is bent at the N atom, with an C—SO2—NH—C torsion angle of −54.9 (3)°. The two benzene rings are tilted relative to each other by 82.3 (2)°. The mol­ecules are linked into centrosymmetric R 2 2(8) motifs by N—H⋯O hydrogen bonds and C—H⋯π inter­actions along [100].

Related literature

For the preparation of the compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2008, 2009a,b ). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-66-o1090-scheme1.jpg

Experimental

Crystal data

  • C14H13Cl2NO2S

  • M r = 330.21

  • Monoclinic, Inline graphic

  • a = 23.085 (3) Å

  • b = 8.113 (2) Å

  • c = 16.503 (3) Å

  • β = 102.03 (2)°

  • V = 3022.9 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.16 mm−1

  • T = 299 K

  • 0.55 × 0.45 × 0.38 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.164, T max = 0.245

  • 7561 measured reflections

  • 2690 independent reflections

  • 2340 reflections with I > 2σ(I)

  • R int = 0.089

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.189

  • S = 1.14

  • 2690 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013504/bx2275sup1.cif

e-66-o1090-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013504/bx2275Isup2.hkl

e-66-o1090-Isup2.hkl (132.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 (4) 2.05 (5) 2.900 (4) 168 (4)
C10—H10⋯Cg1ii 0.93 2.92 3.834 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2008; 2009a,b), we report here the crystal structure of the title compound (I) , (Fig. 1). The conformation of the N—C bond in the C—SO2—NH—C segment of the structure has gauche torsions with respect to the S═O bonds. The molecule is bent at the N atom with the C1—SO2—NH—C7 torsion angle of -54.9 (3)°, compared to the values of 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (II) (Gowda et al., 2009a), -68.1 (3)° in N-(3,5-dichlorophenyl)benzenesulfonamide (III)(Gowda et al., 2008) ; 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)- benzenesulfonamide (IV) (Gowda et al., 2009b) and -69.7 (2)° in 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (V) (Gowda et al., 2009b).

The two benzene rings in (I) are tilted relative to each other by 82.3 (1)°, compared to the values of 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in the two independent molecules of (II), 57.0 (1)° in (III), 82.1 (1)° in (IV) and 82.4 (1)° in (V). The other atomic parameters in (I) are similar to those observed in (II), (III), (IV), (V) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007) as representative examples.The molecules are linked into centrosymmetric R22(8) motifs by N—H···O hydrogen bonds and C—H···π interactions along [1 0 0] (Bernstein et al.,1995), Fig. 2.

Experimental

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its position refined with N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C14H13Cl2NO2S F(000) = 1360
Mr = 330.21 Dx = 1.451 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 23.085 (3) Å θ = 5.5–18.6°
b = 8.113 (2) Å µ = 5.16 mm1
c = 16.503 (3) Å T = 299 K
β = 102.03 (2)° Prism, colourless
V = 3022.9 (10) Å3 0.55 × 0.45 × 0.38 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer 2340 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.089
graphite θmax = 66.9°, θmin = 3.9°
ω/2θ scans h = −15→27
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.164, Tmax = 0.245 l = −19→19
7561 measured reflections 3 standard reflections every 120 min
2690 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1031P)2 + 3.0862P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.006
2690 reflections Δρmax = 0.56 e Å3
187 parameters Δρmin = −0.46 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00090 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43013 (12) 0.1399 (3) 0.15596 (17) 0.0411 (6)
C2 0.44290 (12) 0.2976 (4) 0.13142 (18) 0.0442 (6)
C3 0.43210 (14) 0.4268 (4) 0.1793 (2) 0.0509 (7)
H3 0.4397 0.5330 0.1631 0.061*
C4 0.41035 (13) 0.4069 (4) 0.2511 (2) 0.0507 (7)
C5 0.39736 (14) 0.2499 (4) 0.27317 (19) 0.0541 (8)
H5 0.3822 0.2338 0.3205 0.065*
C6 0.40659 (14) 0.1169 (4) 0.22618 (19) 0.0505 (7)
H6 0.3971 0.0114 0.2412 0.061*
C7 0.35181 (14) 0.0098 (4) −0.0243 (2) 0.0479 (7)
C8 0.33700 (14) 0.0724 (4) −0.1038 (2) 0.0537 (8)
H8 0.3663 0.0948 −0.1332 0.064*
C9 0.27851 (16) 0.1011 (5) −0.1390 (2) 0.0653 (9)
C10 0.23406 (16) 0.0720 (6) −0.0964 (3) 0.0728 (11)
H10 0.1946 0.0926 −0.1205 0.087*
C11 0.24997 (17) 0.0121 (5) −0.0178 (3) 0.0658 (10)
C12 0.30817 (16) −0.0218 (5) 0.0207 (2) 0.0594 (9)
H12 0.3176 −0.0639 0.0742 0.071*
C13 0.46692 (19) 0.3326 (5) 0.0555 (2) 0.0657 (10)
H13A 0.4371 0.3088 0.0070 0.079*
H13B 0.5010 0.2648 0.0557 0.079*
H13C 0.4780 0.4466 0.0551 0.079*
C14 0.4006 (2) 0.5542 (5) 0.3010 (3) 0.0769 (12)
H14A 0.3644 0.6078 0.2751 0.092*
H14B 0.4331 0.6296 0.3040 0.092*
H14C 0.3982 0.5200 0.3558 0.092*
Cl1 0.26077 (5) 0.1724 (2) −0.23956 (8) 0.1056 (6)
Cl2 0.19530 (5) −0.0269 (2) 0.03757 (9) 0.1007 (5)
N1 0.41245 (12) −0.0223 (4) 0.00734 (18) 0.0542 (7)
H1N 0.4333 (19) 0.011 (5) −0.027 (3) 0.065*
O1 0.50684 (10) −0.0457 (3) 0.10170 (15) 0.0615 (7)
O2 0.41982 (13) −0.1739 (3) 0.13907 (17) 0.0680 (7)
S1 0.44494 (3) −0.03942 (9) 0.10412 (5) 0.0485 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0405 (13) 0.0437 (14) 0.0396 (13) 0.0051 (11) 0.0094 (11) 0.0025 (11)
C2 0.0423 (14) 0.0489 (15) 0.0427 (14) 0.0023 (12) 0.0115 (11) 0.0066 (12)
C3 0.0515 (16) 0.0429 (15) 0.0588 (18) 0.0019 (13) 0.0128 (14) 0.0043 (13)
C4 0.0469 (15) 0.0571 (18) 0.0489 (16) 0.0066 (13) 0.0117 (13) −0.0040 (14)
C5 0.0572 (17) 0.0655 (19) 0.0440 (15) 0.0038 (15) 0.0207 (13) 0.0031 (14)
C6 0.0584 (17) 0.0503 (16) 0.0460 (16) 0.0012 (13) 0.0181 (13) 0.0088 (13)
C7 0.0446 (15) 0.0497 (15) 0.0491 (16) 0.0012 (12) 0.0092 (12) −0.0122 (13)
C8 0.0481 (16) 0.0595 (18) 0.0534 (18) 0.0003 (14) 0.0105 (13) −0.0058 (14)
C9 0.0530 (18) 0.079 (2) 0.059 (2) −0.0018 (17) −0.0004 (15) −0.0007 (18)
C10 0.0436 (17) 0.094 (3) 0.076 (3) 0.0021 (18) 0.0022 (17) −0.010 (2)
C11 0.0499 (18) 0.081 (2) 0.069 (2) −0.0055 (17) 0.0176 (17) −0.0172 (19)
C12 0.0541 (18) 0.072 (2) 0.0534 (19) −0.0005 (15) 0.0141 (15) −0.0095 (15)
C13 0.085 (2) 0.062 (2) 0.059 (2) −0.0049 (18) 0.0346 (19) 0.0102 (16)
C14 0.090 (3) 0.071 (3) 0.075 (3) 0.010 (2) 0.028 (2) −0.0170 (19)
Cl1 0.0679 (7) 0.1625 (14) 0.0765 (7) −0.0020 (7) −0.0073 (5) 0.0331 (8)
Cl2 0.0616 (6) 0.1549 (13) 0.0940 (9) −0.0108 (6) 0.0353 (6) −0.0121 (8)
N1 0.0481 (14) 0.0703 (18) 0.0441 (14) 0.0076 (12) 0.0096 (12) −0.0056 (12)
O1 0.0525 (13) 0.0771 (17) 0.0535 (13) 0.0247 (11) 0.0077 (10) −0.0028 (11)
O2 0.0908 (18) 0.0436 (12) 0.0717 (16) 0.0060 (12) 0.0214 (14) 0.0064 (11)
S1 0.0521 (5) 0.0462 (5) 0.0475 (5) 0.0114 (3) 0.0106 (3) 0.0007 (3)

Geometric parameters (Å, °)

C1—C6 1.391 (4) C9—C10 1.379 (6)
C1—C2 1.392 (4) C9—Cl1 1.725 (4)
C1—S1 1.757 (3) C10—C11 1.362 (6)
C2—C3 1.366 (4) C10—H10 0.9300
C2—C13 1.500 (4) C11—C12 1.389 (5)
C3—C4 1.389 (5) C11—Cl2 1.735 (4)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.375 (5) C13—H13A 0.9600
C4—C14 1.495 (5) C13—H13B 0.9600
C5—C6 1.371 (5) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.381 (5) C14—H14C 0.9600
C7—C12 1.394 (5) N1—S1 1.623 (3)
C7—N1 1.413 (4) N1—H1N 0.86 (4)
C8—C9 1.374 (5) O1—S1 1.439 (2)
C8—H8 0.9300 O2—S1 1.414 (3)
C6—C1—C2 120.6 (3) C9—C10—H10 121.2
C6—C1—S1 116.4 (2) C10—C11—C12 123.3 (4)
C2—C1—S1 123.0 (2) C10—C11—Cl2 119.0 (3)
C3—C2—C1 117.5 (3) C12—C11—Cl2 117.6 (3)
C3—C2—C13 118.8 (3) C11—C12—C7 117.2 (4)
C1—C2—C13 123.7 (3) C11—C12—H12 121.4
C2—C3—C4 123.1 (3) C7—C12—H12 121.4
C2—C3—H3 118.5 C2—C13—H13A 109.5
C4—C3—H3 118.5 C2—C13—H13B 109.5
C5—C4—C3 118.1 (3) H13A—C13—H13B 109.5
C5—C4—C14 121.9 (3) C2—C13—H13C 109.5
C3—C4—C14 120.0 (3) H13A—C13—H13C 109.5
C6—C5—C4 120.7 (3) H13B—C13—H13C 109.5
C6—C5—H5 119.6 C4—C14—H14A 109.5
C4—C5—H5 119.6 C4—C14—H14B 109.5
C5—C6—C1 120.0 (3) H14A—C14—H14B 109.5
C5—C6—H6 120.0 C4—C14—H14C 109.5
C1—C6—H6 120.0 H14A—C14—H14C 109.5
C8—C7—C12 120.7 (3) H14B—C14—H14C 109.5
C8—C7—N1 116.7 (3) C7—N1—S1 126.8 (2)
C12—C7—N1 122.6 (3) C7—N1—H1N 110 (3)
C9—C8—C7 119.4 (3) S1—N1—H1N 118 (3)
C9—C8—H8 120.3 O2—S1—O1 118.57 (16)
C7—C8—H8 120.3 O2—S1—N1 108.85 (17)
C8—C9—C10 121.7 (4) O1—S1—N1 103.52 (15)
C8—C9—Cl1 118.6 (3) O2—S1—C1 107.61 (14)
C10—C9—Cl1 119.7 (3) O1—S1—C1 109.74 (14)
C11—C10—C9 117.7 (3) N1—S1—C1 108.13 (14)
C11—C10—H10 121.2
C6—C1—C2—C3 0.8 (4) Cl1—C9—C10—C11 178.5 (3)
S1—C1—C2—C3 −176.7 (2) C9—C10—C11—C12 −0.5 (7)
C6—C1—C2—C13 −178.5 (3) C9—C10—C11—Cl2 −179.7 (3)
S1—C1—C2—C13 4.0 (4) C10—C11—C12—C7 0.7 (6)
C1—C2—C3—C4 1.3 (5) Cl2—C11—C12—C7 180.0 (3)
C13—C2—C3—C4 −179.5 (3) C8—C7—C12—C11 0.0 (5)
C2—C3—C4—C5 −2.2 (5) N1—C7—C12—C11 −178.8 (3)
C2—C3—C4—C14 179.0 (3) C8—C7—N1—S1 159.3 (3)
C3—C4—C5—C6 1.0 (5) C12—C7—N1—S1 −21.8 (5)
C14—C4—C5—C6 179.9 (3) C7—N1—S1—O2 61.7 (3)
C4—C5—C6—C1 0.9 (5) C7—N1—S1—O1 −171.3 (3)
C2—C1—C6—C5 −1.9 (5) C7—N1—S1—C1 −54.9 (3)
S1—C1—C6—C5 175.8 (2) C6—C1—S1—O2 9.6 (3)
C12—C7—C8—C9 −1.0 (5) C2—C1—S1—O2 −172.8 (3)
N1—C7—C8—C9 177.9 (3) C6—C1—S1—O1 −120.7 (3)
C7—C8—C9—C10 1.3 (6) C2—C1—S1—O1 56.9 (3)
C7—C8—C9—Cl1 −177.8 (3) C6—C1—S1—N1 127.0 (2)
C8—C9—C10—C11 −0.5 (7) C2—C1—S1—N1 −55.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.
D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 (4) 2.05 (5) 2.900 (4) 168 (4)
C10—H10···Cg1ii 0.93 2.92 3.834 (4) 168

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2275).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  3. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o2190. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275. [DOI] [PMC free article] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  9. Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013504/bx2275sup1.cif

e-66-o1090-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013504/bx2275Isup2.hkl

e-66-o1090-Isup2.hkl (132.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES