Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 14;66(Pt 5):o1072. doi: 10.1107/S1600536810012468

Cyclo­hexane-1-spiro-2′-imidazolidine-5′-spiro-1′′-cyclo­hexan-4′-one

T Kavitha a, S Ponnuswamy b, R Vijayalakshmi c, M Thenmozhi a, M N Ponnuswamy a,*
PMCID: PMC2979210  PMID: 21579127

Abstract

In the title compound, C13H22N2O, the central imidazolidine ring is in an envelope conformation and the two cyclo­hexane rings adopt chair conformations. In the crystal structure, the mol­ecules are linked into centrosymmetric R 2 2(8) dimers by pairs of N—H⋯O hydrogen bonds.

Related literature

For general background to imidazolidine derivatives, see: Tsao et al. (1991); Wang et al. (1995). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1995).graphic file with name e-66-o1072-scheme1.jpg

Experimental

Crystal data

  • C13H22N2O

  • M r = 222.33

  • Triclinic, Inline graphic

  • a = 5.8270 (8) Å

  • b = 10.1703 (5) Å

  • c = 10.6651 (4) Å

  • α = 86.103 (2)°

  • β = 81.331 (3)°

  • γ = 89.720 (3)°

  • V = 623.36 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.15 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.985, T max = 0.989

  • 11727 measured reflections

  • 2311 independent reflections

  • 2023 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.104

  • S = 1.04

  • 2311 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012468/ci5049sup1.cif

e-66-o1072-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012468/ci5049Isup2.hkl

e-66-o1072-Isup2.hkl (111.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.87 (2) 2.02 (2) 2.8821 (14) 172 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

TK thanks the CSIR, India, for financial support in the form of a Senior Research Fellowship. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Imidazolidines occupy a unique position among the five-membered heterocycles and are highly used in synthetic as well as mechanistic organic chemistry and biochemistry (Tsao et al., 1991). Imidazolidine derivatives are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995).

In the title molecule (Fig. 1), the five-membered imidazolidine ring is transfused with two cyclohexane rings. The bond lengths are comparable to the reported values (Allen et al., 1987). The imidazolidine ring adopts an envelope conformation, with flap atom N1 deviating by 0.198 (2) Å from the C2/N3/C4/C5 plane. The asymmetry parameters for the imidazolidine ring shows that a mirror plane is passing through the atom N1 [ΔCs = 2.7 (1)] (Nardelli, 1995); the puckering parameters [q2 = 0.128 (1) Å and φ(2) = 187.8 (5)°] (Cremer & Pople, 1975) also support the above fact. The sum of the bond angles around N1 (326.6°) shows sp3 hybridization and atom N3 (359.6°) is in accordance with sp2 hybridization. The two cyclohexane rings adopt chair conformations.

In the crystal, molecules are linked into centrosymmetric R22(8) (Bernstein et al., 1995) dimers by pairs of N—H···O hydrogen bonds (Table 1).

Experimental

Potassium cyanide (20 mmol), ammonium chloride (20 mmol) and aqueous ammonium sulfide (30 ml) were dissolved in water (50 ml). Cyclohexanone (40 mmol) was slowly added into the above reaction mixture and stirred for 8 h at 333 K. The precipitated cyclohexan-1-spiro-2'-(imidazolidin-4'-thione)-5'-spiro-1''-cyclohexane was filtered. An ice-cold solution of the above imidazolidin-4-thione (5 mm0l) in glacial acetic acid (5 ml) was treated with hydrogen peroxide (30%, 5 ml) and kept at room temperature for 24 h. The reaction mixture was poured into crushed ice and extracted with ether (40 ml). Evaporation of ether yielded the title compound which was recrystallized by slow evaporation of a water–acetone (20:2) solution.

Refinement

N-bound H atoms were located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles with arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Dashed line indicate hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C13H22N2O Z = 2
Mr = 222.33 F(000) = 244
Triclinic, P1 Dx = 1.184 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8270 (8) Å Cell parameters from 2023 reflections
b = 10.1703 (5) Å θ = 2.7–25.5°
c = 10.6651 (4) Å µ = 0.08 mm1
α = 86.103 (2)° T = 293 K
β = 81.331 (3)° Block, colourless
γ = 89.720 (3)° 0.20 × 0.15 × 0.15 mm
V = 623.36 (9) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer 2311 independent reflections
Radiation source: fine-focus sealed tube 2023 reflections with I > 2σ(I)
graphite Rint = 0.020
ω scans θmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −7→7
Tmin = 0.985, Tmax = 0.989 k = −12→12
11727 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1487P] where P = (Fo2 + 2Fc2)/3
2311 reflections (Δ/σ)max = 0.001
153 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1812 (2) 0.23573 (12) 0.32312 (10) 0.0440 (3)
C2 0.17511 (19) 0.25258 (11) 0.45994 (11) 0.0320 (3)
N3 0.32230 (18) 0.36886 (10) 0.46055 (9) 0.0348 (3)
C4 0.4384 (2) 0.40747 (12) 0.34701 (11) 0.0348 (3)
C5 0.3691 (2) 0.31781 (12) 0.24982 (11) 0.0346 (3)
C6 −0.0713 (2) 0.27667 (14) 0.52388 (13) 0.0438 (3)
H6A −0.1707 0.2053 0.5079 0.053*
H6B −0.1280 0.3579 0.4866 0.053*
C7 −0.0869 (3) 0.28619 (17) 0.66709 (14) 0.0553 (4)
H7A −0.0018 0.3634 0.6834 0.066*
H7B −0.2480 0.2964 0.7042 0.066*
C8 0.0116 (3) 0.16453 (18) 0.72887 (14) 0.0630 (5)
H8A −0.0819 0.0882 0.7193 0.076*
H8B 0.0065 0.1748 0.8190 0.076*
C9 0.2598 (3) 0.14319 (15) 0.66826 (14) 0.0544 (4)
H9A 0.3184 0.0629 0.7061 0.065*
H9B 0.3557 0.2160 0.6845 0.065*
C10 0.2759 (2) 0.13315 (12) 0.52573 (13) 0.0416 (3)
H10A 0.1936 0.0547 0.5101 0.050*
H10B 0.4375 0.1239 0.4892 0.050*
C11 0.5811 (2) 0.23629 (14) 0.20042 (13) 0.0445 (3)
H11A 0.7096 0.2953 0.1672 0.053*
H11B 0.6265 0.1814 0.2704 0.053*
C12 0.5332 (3) 0.14931 (15) 0.09662 (13) 0.0529 (4)
H12A 0.6733 0.1022 0.0657 0.064*
H12B 0.4145 0.0848 0.1315 0.064*
C13 0.4534 (3) 0.23098 (16) −0.01285 (13) 0.0577 (4)
H13A 0.5781 0.2893 −0.0532 0.069*
H13B 0.4159 0.1731 −0.0756 0.069*
C14 0.2427 (3) 0.31170 (16) 0.03279 (13) 0.0572 (4)
H14A 0.1125 0.2531 0.0636 0.069*
H14B 0.2020 0.3675 −0.0379 0.069*
C15 0.2867 (3) 0.39759 (14) 0.13896 (12) 0.0467 (3)
H15A 0.4029 0.4638 0.1048 0.056*
H15B 0.1446 0.4429 0.1697 0.056*
O1 0.58158 (18) 0.49753 (9) 0.32312 (8) 0.0496 (3)
H3 0.345 (3) 0.4032 (16) 0.5305 (15) 0.053 (4)*
H1 0.043 (4) 0.265 (2) 0.301 (2) 0.097 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0481 (7) 0.0532 (7) 0.0324 (6) −0.0184 (5) −0.0079 (5) −0.0091 (5)
C2 0.0332 (6) 0.0333 (6) 0.0310 (6) −0.0062 (5) −0.0078 (5) −0.0063 (5)
N3 0.0434 (6) 0.0335 (5) 0.0290 (5) −0.0089 (4) −0.0078 (4) −0.0070 (4)
C4 0.0404 (6) 0.0332 (6) 0.0323 (6) −0.0054 (5) −0.0089 (5) −0.0047 (5)
C5 0.0399 (6) 0.0357 (6) 0.0294 (6) −0.0071 (5) −0.0076 (5) −0.0054 (5)
C6 0.0334 (7) 0.0506 (8) 0.0486 (8) −0.0011 (6) −0.0088 (5) −0.0054 (6)
C7 0.0424 (8) 0.0719 (10) 0.0494 (8) −0.0067 (7) 0.0067 (6) −0.0177 (7)
C8 0.0770 (11) 0.0735 (11) 0.0361 (8) −0.0247 (9) −0.0025 (7) 0.0021 (7)
C9 0.0700 (10) 0.0470 (8) 0.0491 (8) −0.0036 (7) −0.0236 (7) 0.0091 (6)
C10 0.0433 (7) 0.0316 (6) 0.0512 (8) −0.0003 (5) −0.0098 (6) −0.0051 (5)
C11 0.0459 (7) 0.0468 (7) 0.0424 (7) 0.0003 (6) −0.0091 (6) −0.0098 (6)
C12 0.0659 (9) 0.0470 (8) 0.0465 (8) 0.0030 (7) −0.0041 (7) −0.0166 (6)
C13 0.0811 (11) 0.0589 (9) 0.0338 (7) −0.0059 (8) −0.0051 (7) −0.0151 (6)
C14 0.0735 (10) 0.0669 (10) 0.0363 (7) 0.0019 (8) −0.0219 (7) −0.0100 (7)
C15 0.0609 (9) 0.0459 (8) 0.0359 (7) 0.0046 (6) −0.0135 (6) −0.0063 (6)
O1 0.0645 (6) 0.0472 (5) 0.0371 (5) −0.0263 (5) −0.0055 (4) −0.0052 (4)

Geometric parameters (Å, °)

N1—C5 1.4724 (16) C8—H8B 0.97
N1—C2 1.4759 (15) C9—C10 1.5192 (19)
N1—H1 0.91 (2) C9—H9A 0.97
C2—N3 1.4652 (14) C9—H9B 0.97
C2—C6 1.5203 (17) C10—H10A 0.97
C2—C10 1.5213 (17) C10—H10B 0.97
N3—C4 1.3300 (16) C11—C12 1.5213 (18)
N3—H3 0.872 (17) C11—H11A 0.97
C4—O1 1.2296 (15) C11—H11B 0.97
C4—C5 1.5255 (15) C12—C13 1.516 (2)
C5—C15 1.5243 (18) C12—H12A 0.97
C5—C11 1.5315 (18) C12—H12B 0.97
C6—C7 1.5260 (19) C13—C14 1.511 (2)
C6—H6A 0.97 C13—H13A 0.97
C6—H6B 0.97 C13—H13B 0.97
C7—C8 1.514 (2) C14—C15 1.5281 (18)
C7—H7A 0.97 C14—H14A 0.97
C7—H7B 0.97 C14—H14B 0.97
C8—C9 1.514 (2) C15—H15A 0.97
C8—H8A 0.97 C15—H15B 0.97
C5—N1—C2 109.28 (9) C10—C9—H9A 109.4
C5—N1—H1 108.7 (14) C8—C9—H9B 109.4
C2—N1—H1 107.6 (14) C10—C9—H9B 109.4
N3—C2—N1 103.04 (9) H9A—C9—H9B 108.0
N3—C2—C6 111.13 (10) C9—C10—C2 112.71 (11)
N1—C2—C6 110.88 (10) C9—C10—H10A 109.0
N3—C2—C10 110.55 (9) C2—C10—H10A 109.0
N1—C2—C10 111.11 (10) C9—C10—H10B 109.0
C6—C2—C10 109.97 (10) C2—C10—H10B 109.0
C4—N3—C2 113.89 (9) H10A—C10—H10B 107.8
C4—N3—H3 123.1 (10) C12—C11—C5 112.13 (11)
C2—N3—H3 122.6 (10) C12—C11—H11A 109.2
O1—C4—N3 126.68 (11) C5—C11—H11A 109.2
O1—C4—C5 125.05 (11) C12—C11—H11B 109.2
N3—C4—C5 108.25 (10) C5—C11—H11B 109.2
N1—C5—C15 111.71 (11) H11A—C11—H11B 107.9
N1—C5—C4 103.74 (9) C13—C12—C11 110.91 (12)
C15—C5—C4 111.26 (10) C13—C12—H12A 109.5
N1—C5—C11 112.27 (11) C11—C12—H12A 109.5
C15—C5—C11 109.53 (10) C13—C12—H12B 109.5
C4—C5—C11 108.18 (10) C11—C12—H12B 109.5
C2—C6—C7 112.42 (11) H12A—C12—H12B 108.0
C2—C6—H6A 109.1 C14—C13—C12 111.04 (12)
C7—C6—H6A 109.1 C14—C13—H13A 109.4
C2—C6—H6B 109.1 C12—C13—H13A 109.4
C7—C6—H6B 109.1 C14—C13—H13B 109.4
H6A—C6—H6B 107.9 C12—C13—H13B 109.4
C8—C7—C6 111.17 (12) H13A—C13—H13B 108.0
C8—C7—H7A 109.4 C13—C14—C15 111.62 (12)
C6—C7—H7A 109.4 C13—C14—H14A 109.3
C8—C7—H7B 109.4 C15—C14—H14A 109.3
C6—C7—H7B 109.4 C13—C14—H14B 109.3
H7A—C7—H7B 108.0 C15—C14—H14B 109.3
C7—C8—C9 110.33 (12) H14A—C14—H14B 108.0
C7—C8—H8A 109.6 C5—C15—C14 112.45 (11)
C9—C8—H8A 109.6 C5—C15—H15A 109.1
C7—C8—H8B 109.6 C14—C15—H15A 109.1
C9—C8—H8B 109.6 C5—C15—H15B 109.1
H8A—C8—H8B 108.1 C14—C15—H15B 109.1
C8—C9—C10 111.04 (12) H15A—C15—H15B 107.8
C8—C9—H9A 109.4
C5—N1—C2—N3 13.53 (13) C10—C2—C6—C7 53.21 (14)
C5—N1—C2—C6 132.50 (11) C2—C6—C7—C8 −55.77 (16)
C5—N1—C2—C10 −104.88 (12) C6—C7—C8—C9 56.55 (17)
N1—C2—N3—C4 −9.88 (14) C7—C8—C9—C10 −56.59 (17)
C6—C2—N3—C4 −128.68 (11) C8—C9—C10—C2 55.99 (16)
C10—C2—N3—C4 108.91 (12) N3—C2—C10—C9 69.59 (14)
C2—N3—C4—O1 −176.02 (12) N1—C2—C10—C9 −176.64 (11)
C2—N3—C4—C5 2.38 (14) C6—C2—C10—C9 −53.49 (14)
C2—N1—C5—C15 −132.29 (11) N1—C5—C11—C12 69.59 (14)
C2—N1—C5—C4 −12.35 (13) C15—C5—C11—C12 −55.11 (15)
C2—N1—C5—C11 104.22 (12) C4—C5—C11—C12 −176.55 (11)
O1—C4—C5—N1 −175.37 (12) C5—C11—C12—C13 56.86 (16)
N3—C4—C5—N1 6.20 (13) C11—C12—C13—C14 −56.04 (17)
O1—C4—C5—C15 −55.12 (17) C12—C13—C14—C15 54.99 (18)
N3—C4—C5—C15 126.44 (12) N1—C5—C15—C14 −71.20 (15)
O1—C4—C5—C11 65.24 (16) C4—C5—C15—C14 173.39 (12)
N3—C4—C5—C11 −113.19 (12) C11—C5—C15—C14 53.83 (15)
N3—C2—C6—C7 −69.54 (14) C13—C14—C15—C5 −54.77 (17)
N1—C2—C6—C7 176.48 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···O1i 0.87 (2) 2.02 (2) 2.8821 (14) 172 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5049).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brummer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  6. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Tsao, T. C., Williams, D. E., Worley, C. G. & Worley, S. D. (1991). Biotechnol. Prog.7, 60–66.
  10. Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett.36, 1181–1184.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012468/ci5049sup1.cif

e-66-o1072-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012468/ci5049Isup2.hkl

e-66-o1072-Isup2.hkl (111.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES