Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1158. doi: 10.1107/S1600536810014406

(Z)-N-(3-Nicotinoyl-1,3-thia­zolidin-2-yl­idene)cyanamide

Yun-Man Xie a,*, Yu-Min Li a
PMCID: PMC2979225  PMID: 21579202

Abstract

In the title compound, C10H8N4OS, the dihedral angle between the pyridine and thia­zolidine rings is 52.5 (5)°. Inter­molecular C—H⋯N inter­actions help to stabilize the crystal structure.

Related literature

For related structures, see: Wang et al. (2008); Liu & Li (2009). For the biological activity of thia­zolidine-containing compounds, see: Iwata et al. (1988); Ogawa (2000). For bond-length data, see: Allen et al. (1987).graphic file with name e-66-o1158-scheme1.jpg

Experimental

Crystal data

  • C10H8N4OS

  • M r = 232.26

  • Monoclinic, Inline graphic

  • a = 5.9180 (12) Å

  • b = 15.182 (3) Å

  • c = 11.448 (2) Å

  • β = 94.62 (3)°

  • V = 1025.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.17 × 0.07 × 0.05 mm

Data collection

  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.951, T max = 0.985

  • 7491 measured reflections

  • 1799 independent reflections

  • 1699 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.095

  • S = 1.15

  • 1799 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014406/hg2674sup1.cif

e-66-o1158-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014406/hg2674Isup2.hkl

e-66-o1158-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N4i 0.93 2.52 3.383 (3) 154
C8—H8B⋯N1ii 0.97 2.55 3.481 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Thiazolidine is an important group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988; Ogawa, 2000). In order to search for new thiazolidine compounds with higher bioactivity, we synthesized the title compound and describe its structure here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009). The dihedral angle between pyridine (C1—C5/N1) and thiazolidine (C7—C9/N2/S1) rings is 52.5 (5)°. The intermolecular C—H···N hydrogen bonds stabilize the structure.

Experimental

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), nicotinoyl chloride (1.42 g, 10 mmol) and (1.01 g, 10 mmol ) triethylamine is refluxed in absolute acetone (25 ml) for 4 h. On cooling, the product crystallizes and is filtered, and recrystallized from absolute EtOH, yield 2.13 g (92%). Single crystals suitable for X-ray measurements were obtained by recrystallization from dichloromethane at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C10H8N4OS F(000) = 480
Mr = 232.26 Dx = 1.505 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3351 reflections
a = 5.9180 (12) Å θ = 1.3–27.5°
b = 15.182 (3) Å µ = 0.30 mm1
c = 11.448 (2) Å T = 173 K
β = 94.62 (3)° Needle, colorless
V = 1025.2 (4) Å3 0.17 × 0.07 × 0.05 mm
Z = 4

Data collection

Rigaku Mercury CCD/AFC diffractometer 1799 independent reflections
Radiation source: Sealed Tube 1699 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.054
φ and ω scans θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −6→7
Tmin = 0.951, Tmax = 0.985 k = −18→18
7491 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.7053P] where P = (Fo2 + 2Fc2)/3
1799 reflections (Δ/σ)max = 0.001
145 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.07382 (9) 0.71271 (4) 0.18314 (5) 0.02782 (18)
O1 0.6823 (2) 0.58746 (10) −0.01165 (14) 0.0305 (4)
N1 0.0795 (3) 0.54439 (13) −0.29129 (17) 0.0316 (5)
N2 0.3613 (3) 0.63953 (12) 0.05512 (15) 0.0230 (4)
N3 0.0875 (3) 0.72532 (12) −0.05117 (15) 0.0253 (4)
N4 −0.2685 (4) 0.81222 (15) −0.06511 (18) 0.0426 (6)
C1 0.5188 (4) 0.60983 (14) −0.2489 (2) 0.0264 (5)
H1A 0.6663 0.6306 −0.2347 0.032*
C2 0.4329 (4) 0.58936 (16) −0.3616 (2) 0.0318 (5)
H2A 0.5202 0.5972 −0.4248 0.038*
C3 0.2154 (4) 0.55716 (16) −0.3780 (2) 0.0338 (6)
H3B 0.1591 0.5434 −0.4540 0.041*
C4 0.1635 (4) 0.56544 (14) −0.1829 (2) 0.0262 (5)
H4A 0.0720 0.5573 −0.1214 0.031*
C5 0.3806 (3) 0.59877 (13) −0.15738 (19) 0.0217 (5)
C6 0.4871 (4) 0.60973 (13) −0.03604 (19) 0.0228 (5)
C7 0.4663 (4) 0.63253 (15) 0.17646 (18) 0.0254 (5)
H7A 0.5699 0.6811 0.1940 0.030*
H7B 0.5496 0.5777 0.1871 0.030*
C8 0.2732 (4) 0.63538 (15) 0.25500 (19) 0.0268 (5)
H8A 0.3252 0.6557 0.3329 0.032*
H8B 0.2048 0.5777 0.2611 0.032*
C9 0.1716 (3) 0.69261 (14) 0.04735 (19) 0.0222 (5)
C10 −0.1045 (4) 0.77156 (15) −0.05189 (18) 0.0280 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0233 (3) 0.0389 (4) 0.0215 (3) 0.0052 (2) 0.0034 (2) −0.0013 (2)
O1 0.0204 (9) 0.0388 (9) 0.0324 (9) 0.0057 (7) 0.0024 (6) 0.0012 (7)
N1 0.0276 (11) 0.0311 (11) 0.0363 (12) −0.0026 (8) 0.0029 (9) −0.0036 (9)
N2 0.0185 (9) 0.0278 (10) 0.0228 (10) 0.0038 (7) 0.0023 (7) 0.0007 (8)
N3 0.0237 (10) 0.0293 (10) 0.0232 (10) 0.0055 (8) 0.0044 (7) 0.0029 (8)
N4 0.0399 (13) 0.0566 (14) 0.0306 (12) 0.0207 (12) −0.0015 (9) −0.0012 (10)
C1 0.0205 (11) 0.0250 (11) 0.0342 (13) −0.0001 (9) 0.0058 (9) −0.0007 (10)
C2 0.0334 (14) 0.0362 (13) 0.0272 (13) 0.0006 (11) 0.0104 (10) −0.0007 (10)
C3 0.0368 (14) 0.0371 (14) 0.0272 (13) −0.0029 (11) 0.0006 (10) −0.0058 (10)
C4 0.0252 (12) 0.0246 (11) 0.0300 (12) 0.0030 (9) 0.0088 (9) 0.0000 (9)
C5 0.0192 (11) 0.0197 (10) 0.0267 (11) 0.0029 (8) 0.0037 (8) 0.0000 (9)
C6 0.0202 (12) 0.0202 (11) 0.0286 (12) −0.0009 (9) 0.0057 (9) 0.0007 (9)
C7 0.0232 (12) 0.0272 (11) 0.0252 (12) 0.0028 (9) −0.0014 (9) −0.0013 (9)
C8 0.0259 (12) 0.0303 (12) 0.0237 (12) −0.0016 (10) −0.0014 (9) 0.0030 (9)
C9 0.0176 (11) 0.0222 (10) 0.0270 (12) −0.0015 (9) 0.0034 (9) −0.0004 (9)
C10 0.0311 (13) 0.0344 (12) 0.0187 (11) 0.0057 (11) 0.0037 (9) −0.0003 (9)

Geometric parameters (Å, °)

S1—C9 1.729 (2) C1—H1A 0.9300
S1—C8 1.814 (2) C2—C3 1.376 (3)
O1—C6 1.214 (3) C2—H2A 0.9300
N1—C4 1.338 (3) C3—H3B 0.9300
N1—C3 1.342 (3) C4—C5 1.390 (3)
N2—C9 1.379 (3) C4—H4A 0.9300
N2—C6 1.405 (3) C5—C6 1.488 (3)
N2—C7 1.479 (3) C7—C8 1.510 (3)
N3—C9 1.295 (3) C7—H7A 0.9700
N3—C10 1.335 (3) C7—H7B 0.9700
N4—C10 1.150 (3) C8—H8A 0.9700
C1—C2 1.383 (3) C8—H8B 0.9700
C1—C5 1.391 (3)
C9—S1—C8 92.34 (10) C1—C5—C6 117.34 (19)
C4—N1—C3 116.86 (19) O1—C6—N2 118.05 (19)
C9—N2—C6 128.16 (18) O1—C6—C5 120.49 (19)
C9—N2—C7 112.40 (17) N2—C6—C5 121.28 (18)
C6—N2—C7 117.80 (17) N2—C7—C8 106.01 (17)
C9—N3—C10 118.32 (18) N2—C7—H7A 110.5
C2—C1—C5 118.8 (2) C8—C7—H7A 110.5
C2—C1—H1A 120.6 N2—C7—H7B 110.5
C5—C1—H1A 120.6 C8—C7—H7B 110.5
C3—C2—C1 118.5 (2) H7A—C7—H7B 108.7
C3—C2—H2A 120.8 C7—C8—S1 104.14 (14)
C1—C2—H2A 120.8 C7—C8—H8A 110.9
N1—C3—C2 124.1 (2) S1—C8—H8A 110.9
N1—C3—H3B 118.0 C7—C8—H8B 110.9
C2—C3—H3B 118.0 S1—C8—H8B 110.9
N1—C4—C5 123.4 (2) H8A—C8—H8B 108.9
N1—C4—H4A 118.3 N3—C9—N2 122.30 (19)
C5—C4—H4A 118.3 N3—C9—S1 125.63 (17)
C4—C5—C1 118.4 (2) N2—C9—S1 112.01 (15)
C4—C5—C6 123.50 (19) N4—C10—N3 172.7 (2)
C5—C1—C2—C3 −1.3 (3) C1—C5—C6—N2 150.65 (19)
C4—N1—C3—C2 0.6 (4) C9—N2—C7—C8 34.3 (2)
C1—C2—C3—N1 0.2 (4) C6—N2—C7—C8 −159.14 (18)
C3—N1—C4—C5 −0.3 (3) N2—C7—C8—S1 −36.57 (19)
N1—C4—C5—C1 −0.8 (3) C9—S1—C8—C7 25.54 (16)
N1—C4—C5—C6 −170.6 (2) C10—N3—C9—N2 175.9 (2)
C2—C1—C5—C4 1.6 (3) C10—N3—C9—S1 −7.2 (3)
C2—C1—C5—C6 172.0 (2) C6—N2—C9—N3 −2.5 (3)
C9—N2—C6—O1 157.6 (2) C7—N2—C9—N3 162.4 (2)
C7—N2—C6—O1 −6.6 (3) C6—N2—C9—S1 −179.73 (17)
C9—N2—C6—C5 −27.3 (3) C7—N2—C9—S1 −14.8 (2)
C7—N2—C6—C5 168.55 (18) C8—S1—C9—N3 175.7 (2)
C4—C5—C6—O1 135.5 (2) C8—S1—C9—N2 −7.10 (17)
C1—C5—C6—O1 −34.3 (3) C9—N3—C10—N4 −178 (2)
C4—C5—C6—N2 −39.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···N4i 0.93 2.52 3.383 (3) 154
C8—H8B···N1ii 0.97 2.55 3.481 (3) 162

Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2674).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, pp. 261–262.
  3. Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645. [DOI] [PMC free article] [PubMed]
  4. Ogawa, T. (2000). Jpn Patent JP 2000226378.
  5. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014406/hg2674sup1.cif

e-66-o1158-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014406/hg2674Isup2.hkl

e-66-o1158-Isup2.hkl (88.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES