Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):o1045–o1046. doi: 10.1107/S1600536810012407

Ethenzamide–gentisic acid–acetic acid (2/1/1)

Srinivasulu Aitipamula a,*, Pui Shan Chow a, Reginald BH Tan a,b,*
PMCID: PMC2979229  PMID: 21579106

Abstract

In the title co-crystal solvate, 2-ethoxy­benzamide–2,5-dihydroxy­benzoic acid–ethanoic acid (2/1/1), 2C9H11NO2·C7H6O4·C2H4O2, two nonsteroidal anti-inflammatory drugs, ethenzamide (systematic name: 2-ethoxy­benzamide) and gentisic acid (systematic name: 2,5-dihydroxy­benzoic acid), together with acetic acid (systematic name: ethanoic acid) form a four-component mol­ecular assembly held together by N—H⋯O and O—H⋯O hydrogen bonds. This assembly features two symmetry-independent mol­ecules of ethenzamide, forming supra­molecular acid–amide heterosynthons with gentisic acid and acetic acid. These heterosynthons involve quite strong O—H⋯O [O⋯O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H⋯O [N⋯O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds. The overall crystal packing features several C—H⋯O and π–π stacking inter­actions [centroid–centroid distance = 3.7792 (11) Å].

Related literature

For information on three polymorphs of a 1:1 co-crystal involving ethenzamide and gentisic acid, see: Aitipamula et al. (2009a ). For other co-crystals of ethenzamide, see: Aitipamula et al. (2009b ); Moribe et al. (2004). For related information on the drug activity of ethenzamide, see: Hirasawa et al. (1999). For the crystal structure of ethenzamide, see: Pagola & Stephens (2009). For related information on the drug activity of gentisic acid, see: Lorico et al. (1986). For more information on the supra­molecular heterosynthons, see: Fleischman et al. (2003). For reviews on pharmaceutical co-crystals, see: Schultheiss & Newman (2009); Almarsson & Zaworotko (2004). For more information on the hydrogen bonding, see: Desiraju & Steiner (1999).graphic file with name e-66-o1045-scheme1.jpg

Experimental

Crystal data

  • 2C9H11NO2·C7H6O4·C2H4O2

  • M r = 544.55

  • Triclinic, Inline graphic

  • a = 8.8083 (18) Å

  • b = 8.8802 (18) Å

  • c = 19.880 (4) Å

  • α = 93.65 (3)°

  • β = 93.55 (3)°

  • γ = 119.45 (3)°

  • V = 1343.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.33 × 0.29 × 0.22 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.967, T max = 0.978

  • 19296 measured reflections

  • 6594 independent reflections

  • 6074 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.135

  • S = 1.11

  • 6594 reflections

  • 380 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012407/fb2192sup1.cif

e-66-o1045-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012407/fb2192Isup2.hkl

e-66-o1045-Isup2.hkl (322.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.926 (19) 1.941 (18) 2.6472 (19) 131.6 (14)
N1—H2⋯O5i 0.90 (2) 2.085 (18) 2.9550 (17) 163.0 (15)
N2—H7⋯O4 0.879 (18) 1.959 (17) 2.6536 (16) 135.0 (17)
N2—H10⋯O9ii 0.912 (18) 2.057 (17) 2.9542 (17) 167.4 (17)
O6—H11⋯O1iii 1.02 (2) 1.53 (2) 2.5327 (15) 167.0 (18)
O7—H16⋯O5 0.90 (2) 1.80 (2) 2.6183 (15) 149 (3)
O8—H19⋯O9iv 0.96 (2) 1.77 (2) 2.7231 (16) 173 (2)
O10—H20⋯O3v 0.99 (2) 1.56 (2) 2.5446 (15) 171 (2)
C8—H8A⋯O1vi 0.99 2.46 3.3768 (19) 154
C13—H13⋯O8vii 0.95 2.55 3.452 (2) 159
C14—H14⋯O10viii 0.95 2.53 3.348 (2) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by the Institute of Chemical and Engineering Sciences of A*STAR (Agency for Science, Technology and Research), Singapore.

supplementary crystallographic information

Comment

Ethenzamide (2-ethoxybenzamide) belongs to a non-steroidal anti-inflammatory drug (NSAID) used mainly in combination with other ingredients for the treatment of mild to moderate pains (Hirasawa et al., 1999). The crystal structure of ethenzamide has been recently solved using the high-resolution powder X-ray diffraction (Pagola & Stephens, 2009). Gentisic acid (2,5-dihydroxybenzoic acid) is also a NSAID (Lorico et al., 1986).

Pharmaceutical cocrystals can be defined as molecular complexes formed between a neutral or ionic active pharmaceutical ingredient (API) and a pharmaceutically acceptable compound that is a solid under ambient conditions (Almarsson & Zaworotko, 2004). With our interest in pharmaceutical cocrystals and polymorphism, we recently reported three polymorphs of a 1:1 cocrystal involving ethenzamide and gentisic acid, and showed that the dissolution rates of the cocrystal polymorphs were improved twice when compared to that of the parent ethenzamide (Aitipamula et al., 2009a).

In attempt to prepare pure polymorphs of a cocrystal involving ethenzamide and gentisic acid, they were cocrystallized in 1:1 molar ratio from several organic solvents. Whereas all the crystallization batches resulted in reported 1:1 cocrystal polymorphs (Aitipamula et al., 2009a), crystallization from acetic acid yielded a solvate in which the ethenzamide, gentisic acid, and acetic acid were present in 2:1:1 molar ratio. We present here its crystal structure and analyze the hydrogen bonding.

The crystal structure contains two molecules of ethenzamide, one molecule of gentisic acid and one molecule of acetic acid in the asymmetric unit (Fig. 1). In the structure, gentisic acid and acetic acid molecules are engaged in the formation of acid-amide heterosynthons with symmetry independent molecules of ethenzamide involving quite strong O—H···O [O···O = 2.5446 (15) and 2.5327 (15) Å] and less strong N—H···O [N···O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds (Table 1) (Desiraju & Steiner, 1999). The anti-N—H of the primary amide of ethenzamide and the 2-hydroxy group of gentisic acid form an intramolecular N—H···O [N···O = 2.6472 (19) and 2.6536 (16) Å] and O—H···O [O···O = 2.6183 (15)] hydrogen bonds, respectively (Table 1). Hydroxy atom of O8 of the gentisic acid acts as a hydrogen bond donor to atom O9 of the acetic acid at (2-x,1-y,1-z), and generates a four-component molecular assembly which involves two molecules of ethenzamide, one molecule each of gentisic acid and acetic acid (Fig. 2). It is worth mentioning that the solvent (acetic acid) molecule is an integral part of the four-component molecular assembly, which is bonded in the same way as the remaining constituents that participate in the heterosynthon formation. The four-component molecular assemblies are further stabilized in the crystal structure by various C—H···O interactions (Table 1) (Desiraju & Steiner, 1999), and by the π-π stacking interaction involving the phenyl rings of the molecules of ethenzamide and gentisic acid: Cg1···Cg2 (1-x, 1-y, 1-z) = 3.7792 (11) Å, where Cg1 and Cg2 denote the centroids of the rings C1—C6 and C19—C24 of ethenzamide and gentisic acid, respectively (Fig. 3).

In the light of the overwhelming interest in the development of pharmaceutical cocrystals for improving the physico-chemical properties of the APIs (Schultheiss & Newman, 2009), the title cocrystal solvate reported here presents some special features. First, it contains two APIs and thus can be considered as a multi-API cocrystal. Second, it contains the pharmaceutically acceptable acetic acid in the crystal structure. These two aspects make the title cocrystal solvate a potential solid form for development of a combination drug involving ethenzamide and gentisic acid.

Experimental

The title cocrystal solvate was obtained by slow evaporation of a glacial acetic acid (5 ml) solution of a 1:1 molar ratio of ethenzamide (100 mg, 0.605 mmol) and gentisic acid (93.3 mg, 0.605 mmol) at ambinent conditions. The block-shaped crystals, the dimensions of which were typically as those of the used sample for data collection, were obtained within 7 days.

Refinement

Though all the H-atoms could be dinstinguished in the difference electron density map, the H-atoms bonded to C-atoms were included at the geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 Å (aryl), 0.99 Å (methylene), and 0.98 Å (methyl). Uiso(H)aryl/methylene=1.2 Ueq(C) and Uiso(H)methyl=1.5 Ueq(C). The positional parameters of the H-atoms bonded to N and O were allowed to be refined freely while Uiso(H)amine=1.2 Ueq(N) and Uiso(H)hydroxyl=1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The title molecules of ethenzamide, gentisic acid and aceitic acid with the atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The hydrogen bonded four-component molecular assembly in the crystal structure of the title cocrystal solvate. Atoms participating in the hydrogen bonding were labelled.

Fig. 3.

Fig. 3.

Section of the crystal structure, showing the π-π stacking interaction between the aromatic rings of the four-component molecular assemblies.

Crystal data

2C9H11NO2·C7H6O4·C2H4O2 Z = 2
Mr = 544.55 F(000) = 576
Triclinic, P1 Dx = 1.346 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8083 (18) Å Cell parameters from 3760 reflections
b = 8.8802 (18) Å θ = 2.1–31.0°
c = 19.880 (4) Å µ = 0.10 mm1
α = 93.65 (3)° T = 110 K
β = 93.55 (3)° Block, yellow
γ = 119.45 (3)° 0.33 × 0.29 × 0.22 mm
V = 1343.5 (6) Å3

Data collection

Rigaku Saturn CCD area-detector diffractometer 6594 independent reflections
Radiation source: fine-focus sealed tube 6074 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (Blessing, 1995) h = −11→11
Tmin = 0.967, Tmax = 0.978 k = −11→9
19296 measured reflections l = −26→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.2882P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
6594 reflections Δρmax = 0.25 e Å3
380 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0054 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O4 0.18598 (11) 0.96579 (12) 0.43017 (5) 0.0280 (2)
O9 1.05478 (12) 0.54627 (13) 0.63748 (5) 0.0319 (2)
O3 −0.22283 (12) 0.57234 (13) 0.51754 (5) 0.0324 (2)
O10 0.76432 (12) 0.38996 (13) 0.61300 (5) 0.0316 (2)
H20 0.781 (2) 0.464 (3) 0.5756 (10) 0.047*
N2 0.06949 (14) 0.72419 (16) 0.51542 (6) 0.0281 (2)
H10 0.079 (2) 0.668 (2) 0.5509 (9) 0.034*
H7 0.159 (2) 0.811 (2) 0.5000 (9) 0.034*
C16 −0.09157 (16) 0.68847 (16) 0.49396 (6) 0.0249 (2)
C11 0.01615 (16) 0.92217 (16) 0.41021 (6) 0.0251 (3)
C12 −0.02542 (17) 1.00581 (18) 0.36157 (7) 0.0295 (3)
H12 0.0654 1.0958 0.3409 0.035*
C18 0.49661 (17) 1.13984 (19) 0.43493 (7) 0.0325 (3)
H18A 0.5037 1.1604 0.4843 0.049*
H18B 0.5932 1.2403 0.4180 0.049*
H18C 0.5050 1.0356 0.4229 0.049*
C17 0.32440 (16) 1.11405 (17) 0.40346 (7) 0.0285 (3)
H17A 0.3150 1.2191 0.4149 0.034*
H17B 0.3155 1.0925 0.3535 0.034*
C10 −0.11871 (16) 0.78677 (16) 0.44080 (6) 0.0246 (2)
C15 −0.29227 (16) 0.74279 (17) 0.42099 (7) 0.0277 (3)
H15 −0.3844 0.6526 0.4411 0.033*
C13 −0.19922 (18) 0.95831 (18) 0.34313 (7) 0.0308 (3)
H13 −0.2264 1.0162 0.3099 0.037*
C26 0.91047 (17) 0.43317 (17) 0.65051 (7) 0.0283 (3)
C14 −0.33339 (17) 0.82690 (18) 0.37295 (7) 0.0308 (3)
H14 −0.4521 0.7951 0.3605 0.037*
C27 0.8867 (2) 0.3342 (2) 0.71097 (8) 0.0371 (3)
H27A 0.9874 0.3168 0.7199 0.056*
H27B 0.7791 0.2209 0.7020 0.056*
H27C 0.8780 0.4001 0.7505 0.056*
O1 0.91975 (12) 0.71644 (12) 1.01611 (5) 0.0296 (2)
O2 0.45825 (12) 0.67508 (13) 0.93005 (5) 0.0298 (2)
C1 0.66698 (16) 0.57974 (16) 0.93614 (6) 0.0247 (2)
N1 0.75912 (17) 0.84922 (16) 1.00868 (6) 0.0322 (3)
H1 0.656 (2) 0.845 (2) 0.9926 (9) 0.039*
H2 0.829 (2) 0.926 (2) 1.0438 (9) 0.039*
C7 0.78960 (16) 0.72148 (16) 0.98983 (6) 0.0254 (2)
C2 0.50360 (17) 0.55485 (16) 0.90874 (6) 0.0262 (3)
C6 0.71780 (18) 0.46025 (17) 0.91414 (7) 0.0291 (3)
H6 0.8278 0.4760 0.9321 0.035*
C8 0.28786 (17) 0.65018 (19) 0.90704 (7) 0.0316 (3)
H8A 0.1940 0.5434 0.9228 0.038*
H8B 0.2710 0.6394 0.8569 0.038*
C9 0.2832 (2) 0.8079 (2) 0.93678 (8) 0.0388 (3)
H9A 0.3025 0.8181 0.9863 0.058*
H9B 0.1687 0.7961 0.9232 0.058*
H9C 0.3755 0.9123 0.9201 0.058*
C4 0.44999 (19) 0.29481 (18) 0.84136 (7) 0.0344 (3)
H4 0.3759 0.1974 0.8093 0.041*
C3 0.39524 (18) 0.41077 (18) 0.86209 (7) 0.0314 (3)
H3 0.2839 0.3921 0.8445 0.038*
C5 0.61151 (19) 0.31929 (18) 0.86680 (7) 0.0330 (3)
H5 0.6489 0.2402 0.8519 0.040*
O8 0.70122 (13) 0.23351 (13) 0.25999 (5) 0.0327 (2)
H19 0.784 (3) 0.317 (3) 0.2955 (10) 0.049*
O6 0.13707 (13) −0.09895 (13) 0.11728 (5) 0.0319 (2)
H11 0.039 (3) −0.166 (3) 0.0787 (10) 0.048*
O5 −0.01505 (12) 0.03810 (13) 0.13600 (5) 0.0327 (2)
O7 0.10781 (13) 0.29851 (13) 0.23160 (5) 0.0325 (2)
H16 0.033 (3) 0.217 (3) 0.1981 (10) 0.049*
C24 0.41450 (17) 0.13298 (16) 0.20904 (6) 0.0254 (2)
H24 0.4210 0.0417 0.1842 0.030*
C22 0.54594 (17) 0.38590 (17) 0.29022 (6) 0.0285 (3)
H22 0.6432 0.4691 0.3207 0.034*
C23 0.55542 (16) 0.25175 (17) 0.25389 (6) 0.0264 (3)
C19 0.26205 (16) 0.14500 (16) 0.19962 (6) 0.0248 (2)
C25 0.11617 (17) 0.02315 (16) 0.14875 (6) 0.0262 (3)
C21 0.39528 (17) 0.39826 (17) 0.28208 (7) 0.0285 (3)
H21 0.3894 0.4890 0.3076 0.034*
C20 0.25202 (17) 0.27906 (17) 0.23681 (6) 0.0263 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O4 0.0206 (4) 0.0310 (5) 0.0326 (5) 0.0122 (4) 0.0044 (3) 0.0081 (4)
O9 0.0255 (4) 0.0373 (5) 0.0296 (5) 0.0130 (4) 0.0020 (3) 0.0044 (4)
O3 0.0221 (4) 0.0334 (5) 0.0383 (5) 0.0106 (4) 0.0038 (4) 0.0089 (4)
O10 0.0241 (4) 0.0338 (5) 0.0340 (5) 0.0119 (4) 0.0045 (4) 0.0054 (4)
N2 0.0215 (5) 0.0322 (6) 0.0288 (5) 0.0116 (4) 0.0025 (4) 0.0071 (4)
C16 0.0222 (5) 0.0254 (6) 0.0258 (6) 0.0112 (5) 0.0028 (4) −0.0010 (4)
C11 0.0230 (5) 0.0271 (6) 0.0257 (6) 0.0136 (5) 0.0007 (4) −0.0018 (5)
C12 0.0292 (6) 0.0305 (6) 0.0301 (6) 0.0160 (5) 0.0026 (5) 0.0035 (5)
C18 0.0246 (6) 0.0338 (7) 0.0383 (7) 0.0130 (5) 0.0055 (5) 0.0097 (6)
C17 0.0243 (6) 0.0285 (6) 0.0314 (6) 0.0115 (5) 0.0059 (5) 0.0068 (5)
C10 0.0234 (6) 0.0246 (6) 0.0251 (6) 0.0121 (5) 0.0010 (4) −0.0025 (4)
C15 0.0234 (6) 0.0258 (6) 0.0308 (6) 0.0111 (5) −0.0010 (5) −0.0037 (5)
C13 0.0327 (7) 0.0301 (7) 0.0317 (6) 0.0185 (5) −0.0046 (5) −0.0006 (5)
C26 0.0293 (6) 0.0302 (6) 0.0275 (6) 0.0166 (5) 0.0049 (5) 0.0002 (5)
C14 0.0254 (6) 0.0301 (7) 0.0359 (7) 0.0149 (5) −0.0050 (5) −0.0040 (5)
C27 0.0446 (8) 0.0372 (8) 0.0330 (7) 0.0220 (6) 0.0083 (6) 0.0079 (6)
O1 0.0282 (4) 0.0290 (5) 0.0326 (5) 0.0159 (4) −0.0005 (4) −0.0008 (4)
O2 0.0302 (5) 0.0331 (5) 0.0305 (5) 0.0195 (4) 0.0020 (4) 0.0017 (4)
C1 0.0276 (6) 0.0228 (6) 0.0231 (6) 0.0117 (5) 0.0045 (4) 0.0048 (4)
N1 0.0356 (6) 0.0299 (6) 0.0338 (6) 0.0201 (5) −0.0035 (5) −0.0042 (5)
C7 0.0280 (6) 0.0238 (6) 0.0253 (6) 0.0130 (5) 0.0050 (4) 0.0054 (4)
C2 0.0299 (6) 0.0275 (6) 0.0235 (6) 0.0154 (5) 0.0062 (5) 0.0060 (5)
C6 0.0309 (6) 0.0281 (6) 0.0306 (6) 0.0162 (5) 0.0053 (5) 0.0039 (5)
C8 0.0275 (6) 0.0372 (7) 0.0342 (7) 0.0186 (6) 0.0047 (5) 0.0091 (5)
C9 0.0370 (7) 0.0420 (8) 0.0474 (8) 0.0261 (7) 0.0089 (6) 0.0101 (6)
C4 0.0375 (7) 0.0292 (7) 0.0298 (7) 0.0123 (6) 0.0017 (5) −0.0008 (5)
C3 0.0299 (6) 0.0316 (7) 0.0290 (6) 0.0126 (5) 0.0018 (5) 0.0025 (5)
C5 0.0391 (7) 0.0288 (7) 0.0332 (7) 0.0188 (6) 0.0052 (5) −0.0001 (5)
O8 0.0291 (5) 0.0363 (5) 0.0357 (5) 0.0198 (4) −0.0039 (4) −0.0006 (4)
O6 0.0344 (5) 0.0295 (5) 0.0336 (5) 0.0193 (4) −0.0058 (4) −0.0050 (4)
O5 0.0278 (5) 0.0350 (5) 0.0357 (5) 0.0176 (4) −0.0032 (4) −0.0034 (4)
O7 0.0290 (5) 0.0329 (5) 0.0383 (5) 0.0185 (4) 0.0006 (4) −0.0026 (4)
C24 0.0287 (6) 0.0240 (6) 0.0249 (6) 0.0141 (5) 0.0025 (4) 0.0037 (4)
C22 0.0297 (6) 0.0260 (6) 0.0257 (6) 0.0110 (5) 0.0007 (5) 0.0016 (5)
C23 0.0260 (6) 0.0278 (6) 0.0266 (6) 0.0142 (5) 0.0021 (4) 0.0054 (5)
C19 0.0255 (6) 0.0235 (6) 0.0243 (6) 0.0113 (5) 0.0019 (4) 0.0037 (4)
C25 0.0271 (6) 0.0255 (6) 0.0266 (6) 0.0135 (5) 0.0029 (4) 0.0040 (5)
C21 0.0314 (6) 0.0254 (6) 0.0287 (6) 0.0142 (5) 0.0034 (5) 0.0012 (5)
C20 0.0269 (6) 0.0264 (6) 0.0270 (6) 0.0138 (5) 0.0045 (4) 0.0051 (5)

Geometric parameters (Å, °)

O4—C11 1.3720 (15) C1—C7 1.4965 (19)
O4—C17 1.4466 (16) N1—C7 1.3256 (17)
O9—C26 1.2289 (17) N1—H1 0.930 (19)
O3—C16 1.2555 (16) N1—H2 0.90 (2)
O10—C26 1.3112 (17) C2—C3 1.395 (2)
O10—H20 0.99 (2) C6—C5 1.385 (2)
N2—C16 1.3269 (16) C6—H6 0.9500
N2—H10 0.913 (18) C8—C9 1.506 (2)
N2—H7 0.879 (18) C8—H8A 0.9900
C16—C10 1.4924 (19) C8—H8B 0.9900
C11—C12 1.3913 (19) C9—H9A 0.9800
C11—C10 1.4159 (18) C9—H9B 0.9800
C12—C13 1.3899 (18) C9—H9C 0.9800
C12—H12 0.9500 C4—C5 1.386 (2)
C18—C17 1.5058 (18) C4—C3 1.386 (2)
C18—H18A 0.9800 C4—H4 0.9500
C18—H18B 0.9800 C3—H3 0.9500
C18—H18C 0.9800 C5—H5 0.9500
C17—H17A 0.9900 O8—C23 1.3705 (16)
C17—H17B 0.9900 O8—H19 0.96 (2)
C10—C15 1.4012 (17) O6—C25 1.3134 (16)
C15—C14 1.384 (2) O6—H11 1.02 (2)
C15—H15 0.9500 O5—C25 1.2397 (16)
C13—C14 1.389 (2) O7—C20 1.3622 (16)
C13—H13 0.9500 O7—H16 0.90 (2)
C26—C27 1.499 (2) C24—C23 1.3798 (19)
C14—H14 0.9500 C24—C19 1.4007 (18)
C27—H27A 0.9800 C24—H24 0.9500
C27—H27B 0.9800 C22—C21 1.3849 (19)
C27—H27C 0.9800 C22—C23 1.3941 (19)
O1—C7 1.2523 (16) C22—H22 0.9500
O2—C2 1.3644 (16) C19—C20 1.4040 (18)
O2—C8 1.4444 (16) C19—C25 1.4756 (19)
C1—C6 1.3963 (18) C21—C20 1.3955 (19)
C1—C2 1.4112 (18) C21—H21 0.9500
C11—O4—C17 117.67 (10) O1—C7—N1 121.31 (12)
C26—O10—H20 113.5 (11) O1—C7—C1 118.85 (12)
C16—N2—H10 116.3 (11) N1—C7—C1 119.85 (12)
C16—N2—H7 119.0 (11) O2—C2—C3 122.70 (12)
H10—N2—H7 123.8 (16) O2—C2—C1 117.45 (11)
O3—C16—N2 121.07 (12) C3—C2—C1 119.85 (12)
O3—C16—C10 119.00 (11) C5—C6—C1 121.49 (13)
N2—C16—C10 119.93 (12) C5—C6—H6 119.3
O4—C11—C12 122.18 (12) C1—C6—H6 119.3
O4—C11—C10 117.69 (11) O2—C8—C9 106.37 (12)
C12—C11—C10 120.13 (12) O2—C8—H8A 110.5
C13—C12—C11 120.32 (13) C9—C8—H8A 110.5
C13—C12—H12 119.8 O2—C8—H8B 110.5
C11—C12—H12 119.8 C9—C8—H8B 110.5
C17—C18—H18A 109.5 H8A—C8—H8B 108.6
C17—C18—H18B 109.5 C8—C9—H9A 109.5
H18A—C18—H18B 109.5 C8—C9—H9B 109.5
C17—C18—H18C 109.5 H9A—C9—H9B 109.5
H18A—C18—H18C 109.5 C8—C9—H9C 109.5
H18B—C18—H18C 109.5 H9A—C9—H9C 109.5
O4—C17—C18 107.57 (11) H9B—C9—H9C 109.5
O4—C17—H17A 110.2 C5—C4—C3 120.78 (13)
C18—C17—H17A 110.2 C5—C4—H4 119.6
O4—C17—H17B 110.2 C3—C4—H4 119.6
C18—C17—H17B 110.2 C4—C3—C2 120.05 (13)
H17A—C17—H17B 108.5 C4—C3—H3 120.0
C15—C10—C11 117.89 (12) C2—C3—H3 120.0
C15—C10—C16 116.73 (12) C6—C5—C4 119.29 (13)
C11—C10—C16 125.37 (11) C6—C5—H5 120.4
C14—C15—C10 121.93 (13) C4—C5—H5 120.4
C14—C15—H15 119.0 C23—O8—H19 109.3 (12)
C10—C15—H15 119.0 C25—O6—H11 110.3 (11)
C14—C13—C12 120.47 (13) C20—O7—H16 105.4 (13)
C14—C13—H13 119.8 C23—C24—C19 120.98 (12)
C12—C13—H13 119.8 C23—C24—H24 119.5
O9—C26—O10 122.84 (13) C19—C24—H24 119.5
O9—C26—C27 122.78 (13) C21—C22—C23 120.24 (12)
O10—C26—C27 114.38 (12) C21—C22—H22 119.9
C15—C14—C13 119.25 (12) C23—C22—H22 119.9
C15—C14—H14 120.4 O8—C23—C24 117.91 (12)
C13—C14—H14 120.4 O8—C23—C22 122.62 (12)
C26—C27—H27A 109.5 C24—C23—C22 119.46 (12)
C26—C27—H27B 109.5 C24—C19—C20 119.47 (12)
H27A—C27—H27B 109.5 C24—C19—C25 120.45 (12)
C26—C27—H27C 109.5 C20—C19—C25 120.02 (12)
H27A—C27—H27C 109.5 O5—C25—O6 122.74 (12)
H27B—C27—H27C 109.5 O5—C25—C19 121.85 (12)
C2—O2—C8 119.79 (11) O6—C25—C19 115.40 (11)
C6—C1—C2 118.51 (12) C22—C21—C20 120.82 (12)
C6—C1—C7 116.30 (12) C22—C21—H21 119.6
C2—C1—C7 125.14 (12) C20—C21—H21 119.6
C7—N1—H1 120.7 (11) O7—C20—C21 117.69 (12)
C7—N1—H2 117.4 (12) O7—C20—C19 123.28 (12)
H1—N1—H2 120.6 (16) C21—C20—C19 119.02 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.926 (19) 1.941 (18) 2.6472 (19) 131.6 (14)
N1—H2···O5i 0.90 (2) 2.085 (18) 2.9550 (17) 163.0 (15)
N2—H7···O4 0.879 (18) 1.959 (17) 2.6536 (16) 135.0 (17)
N2—H10···O9ii 0.912 (18) 2.057 (17) 2.9542 (17) 167.4 (17)
O6—H11···O1iii 1.02 (2) 1.53 (2) 2.5327 (15) 167.0 (18)
O7—H16···O5 0.90 (2) 1.80 (2) 2.6183 (15) 149 (3)
O8—H19···O9iv 0.96 (2) 1.77 (2) 2.7231 (16) 173 (2)
O10—H20···O3v 0.99 (2) 1.56 (2) 2.5446 (15) 171 (2)
C8—H8A···O1vi 0.99 2.46 3.3768 (19) 154
C13—H13···O8vii 0.95 2.55 3.452 (2) 159
C14—H14···O10viii 0.95 2.53 3.348 (2) 145

Symmetry codes: (i) x+1, y+1, z+1; (ii) x−1, y, z; (iii) x−1, y−1, z−1; (iv) −x+2, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z+2; (vii) x−1, y+1, z; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2192).

References

  1. Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009a). CrystEngComm, 11, 1823–1827.
  2. Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2009b). CrystEngComm, 11, 889–895.
  3. Almarsson, Ö. & Zaworotko, M. J. (2004). Chem. Commun. pp. 1889–1896. [DOI] [PubMed]
  4. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  5. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  6. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13, IUCr Monographs on Crystallography, Vol. 9. Oxford University Press.
  7. Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  8. Hirasawa, N., Okamoto, H. & Danjo, K. (1999). Chem. Pharm. Bull.47, 417–420. [DOI] [PubMed]
  9. Lorico, A., Masturzo, P., Villa, S., Salmona, M., Semeraro, N. & Gaetano, G. D. (1986). Biochem. Pharmacol.35, 2443–2445. [DOI] [PubMed]
  10. Moribe, K., Tsuchiya, M., Tozuka, Y., Yamaguchi, K., Oguchi, T. & Yamamoto, K. (2004). Chem. Pharm. Bull.52, 524–529. [DOI] [PubMed]
  11. Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586. [DOI] [PubMed]
  12. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  13. Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des.9, 2950–2967. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012407/fb2192sup1.cif

e-66-o1045-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012407/fb2192Isup2.hkl

e-66-o1045-Isup2.hkl (322.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES