Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 24;66(Pt 5):o1146. doi: 10.1107/S1600536810012699

N-Benzyl-N-methyl-3-phenyl-3-[4-(tri­fluoro­meth­yl)phen­oxy]propanamine (N-benzylflouoxetine)

Nosheen Kanwal a,*, Erum Akbar Hussain a, Onur Sahin b
PMCID: PMC2979243  PMID: 21579194

Abstract

In the title compound, C24H24F3NO, the N-benzyl derivative of fluoxetine {N-methyl-3-[4-(trifluoro­meth­yl)phen­oxy]­benzene­propanamine}, the three aromatic rings A, B and C are inclined to one another by 76.77 (12)° for A/B, 17.05 (14)° for A/C and 89.66 (14)° for B/C. In the crystal structure, mol­ecules are linked via C—H⋯π inter­actions to form one-dimensional chains propagating in the [010] direction.

Related literature

For the therapeutic uses of fluoxetine, see: Benefield et al. (1986); Feighner & Boyer (1991); Markowitz et al. (1999); Wong et al. (1995); Zhu et al. (2009). For the crystal structures of various fluoxetine derivatives, see: Childs et al. (2004); Robertson et al. (1988).graphic file with name e-66-o1146-scheme1.jpg

Experimental

Crystal data

  • C24H24F3NO

  • M r = 399.44

  • Monoclinic, Inline graphic

  • a = 6.1712 (5) Å

  • b = 17.2900 (14) Å

  • c = 20.3028 (16) Å

  • β = 91.029 (5)°

  • V = 2166.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.22 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • 24582 measured reflections

  • 5395 independent reflections

  • 1743 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.136

  • S = 0.91

  • 5395 reflections

  • 297 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012699/su2167sup1.cif

e-66-o1146-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012699/su2167Isup2.hkl

e-66-o1146-Isup2.hkl (258.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. C—H⋯π inter­actions (Å, °).

Cg1 is the centroid of ring A (C1–C6), Cg2 that of ring B (C8–C13) and Cg3 that of ring C (C17–C22).

D H Centroid C—H H⋯Cg DCg C—H⋯Cg
C10 H10 Cg3i 0.93 2.90 3.588 (3) 132
C18 H18 Cg1ii 0.93 3.08 3.976 (4) 162
C19 H19 Cg2ii 0.93 2.94 3.719 (4) 143

Symmetry codes: (i) −x + 1, y − Inline graphic, −z + Inline graphic; (ii) −x, y + Inline graphic, −z + Inline graphic.

Acknowledgments

The authors are grateful to Professor Hoong-Kun Fun (Universiti Sains Malaysia) and Mr Zeeshan Haider (HEJ) for their kind assistance.

supplementary crystallographic information

Comment

Fluoxetine (N-methyl-3-[4-(trifluoromethyl)phenoxy]benzenepropanamine) has been approved worldwide in the therapy of major depression (Markowitz et al., 1999); Feighner & Boyer, 1991) and in the treatment of other syndromes, such as Bulimia nervosa, Panic fits and obsessive–compulsive disorder (Benefield et al., 1986; Wong et al., 1995). Recently, Zhu et al. reported that continuous Fluoxetine administration also prevents recurrence of pulmonary arterial hypertension in rats (Zhu et al., 2009). Crystal structure of Fluoxetine has been reported as the hydrochloride, hydrochloride benzoic acid, hydrochloride succinic acid and hydrochloride fumaric acid (Robertson et al., 1988; Childs et al., 2004). Herein, we report on the crystal structure of N-Benzyl Fluoxetine.

The molecular structure of the title molecule is illustrated in Fig. 1. The geometrical parameters are similar to those in the above mentioned derivatives. In the title compound the F atoms of the CF3 groups shows disorder and were modelled with three different orientations (F1a—F3a, F1b—F2b and F2aa—F2ab—F3bb—F3ba) with occupancy factors of 0.50, 0.50 and 0.25, respectively (Fig. 1). The H7—C7—C8—C9 torsion angle is -19.2°, indicating that the monosubstituted phenyl ring (B) deviates only slightly from the plane defined by atoms C8, C7, and H7.

The relationship of this phenyl ring to the trifluoromethyl-substituted phenoxy ring (A) is defined by the torsion angles C8—C7—O1—C1 and C7—O1—C1—C6, which are 82.8 (2) and -6.9 (3)°, respectively. The three phenyl ring mean planes are approximately planar, with maximum deviations of 0.0094 (17) Å for atom C3 (ring A), 0.0032 (18) Å for atom C11 (ring B) and 0.0050 (17) Å for atom C17 (ring C).

In the crystal structure of the title compound, there are no intra- or intermolecular hydrogen-bonding interactions, only weak C—H···π interactions. These lead to the formation of a chain propagating along [010]; see Fig. 2 and Table 1.

Experimental

A mixture of Fluoxetine hydrogen chloride 0.5 g (1.45 mmol), sodium hydride 0.14 g (5.8 mmol) and N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min, followed by the addition of benzyl chloride 0.33 ml (2.9 mmol). Stirring was continued for a period of 3 h and the contents were then poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol, giving colourless prism-like crystals, suitable for X-ray analysis.

Refinement

The F atoms of the CF3 group shows disorder and they were modelled with three different orientations (F1a/F3a, F1b/F2b and F2aa/F2ab/F3bb/F3ba) with occupancy factors of 0.50, 0.50 and 0.25, respectively The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.98, 0.97, 0.96 and 0.93 Å, for methine, methylene, methyl and aromatic H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for methine, methylene and aromatic H atoms and = 1.5 for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the three independent molecules of the title compound, showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound, showing the formation of a chain along [010], generated by the C—H···π interactions [For clarity the H and F atoms not involved in the motifs shown have been omitted].

Crystal data

C24H24F3NO F(000) = 840
Mr = 399.44 Dx = 1.225 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1693 reflections
a = 6.1712 (5) Å θ = 3.1–17.9°
b = 17.2900 (14) Å µ = 0.09 mm1
c = 20.3028 (16) Å T = 296 K
β = 91.029 (5)° Prism, colourless
V = 2166.0 (3) Å3 0.31 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1743 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.092
graphite θmax = 28.4°, θmin = 2.3°
φ and ω scans h = −8→8
24582 measured reflections k = −20→23
5395 independent reflections l = −27→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
5395 reflections Δρmax = 0.13 e Å3
297 parameters Δρmin = −0.12 e Å3
8 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0059 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.0963 (2) 0.50665 (8) 0.16926 (7) 0.0583 (4)
N1 0.5187 (3) 0.65181 (10) 0.17839 (9) 0.0558 (5)
C1 0.0584 (4) 0.47323 (13) 0.22867 (11) 0.0502 (6)
C2 −0.1392 (4) 0.49238 (13) 0.25629 (12) 0.0594 (6)
H2 −0.2349 0.5248 0.2337 0.071*
C3 −0.1931 (4) 0.46374 (15) 0.31639 (13) 0.0680 (7)
H3 −0.3265 0.4761 0.3342 0.082*
C4 −0.0517 (5) 0.41668 (14) 0.35088 (12) 0.0639 (7)
C5 0.1420 (4) 0.39704 (14) 0.32336 (13) 0.0689 (7)
H5 0.2372 0.3647 0.3462 0.083*
C6 0.1974 (4) 0.42465 (13) 0.26226 (12) 0.0620 (7)
H6 0.3284 0.4104 0.2438 0.074*
C7 0.3076 (3) 0.49854 (14) 0.14017 (11) 0.0543 (6)
H7 0.4190 0.5008 0.1751 0.065*
C8 0.3265 (4) 0.42297 (14) 0.10444 (11) 0.0519 (6)
C9 0.5138 (4) 0.37997 (15) 0.10818 (12) 0.0697 (7)
H9 0.6283 0.3970 0.1348 0.084*
C10 0.5352 (5) 0.31207 (17) 0.07326 (14) 0.0777 (8)
H10 0.6631 0.2838 0.0764 0.093*
C11 0.3681 (6) 0.28656 (16) 0.03409 (13) 0.0788 (8)
H11 0.3826 0.2410 0.0103 0.095*
C12 0.1785 (5) 0.32795 (18) 0.02973 (13) 0.0778 (8)
H12 0.0641 0.3104 0.0033 0.093*
C13 0.1591 (4) 0.39583 (15) 0.06486 (12) 0.0665 (7)
H13 0.0307 0.4238 0.0618 0.080*
C14 0.3318 (4) 0.56805 (13) 0.09553 (11) 0.0619 (7)
H14A 0.4648 0.5627 0.0712 0.074*
H14B 0.2122 0.5686 0.0639 0.074*
C15 0.3365 (3) 0.64435 (13) 0.13203 (11) 0.0598 (7)
H15A 0.3431 0.6861 0.1002 0.072*
H15B 0.2026 0.6500 0.1559 0.072*
C16 0.4799 (4) 0.71459 (14) 0.22471 (12) 0.0675 (7)
H16A 0.4284 0.7595 0.2005 0.081*
H16B 0.6159 0.7284 0.2463 0.081*
C17 0.3187 (4) 0.69440 (15) 0.27594 (12) 0.0594 (7)
C18 0.1365 (5) 0.73751 (17) 0.28500 (13) 0.0794 (8)
H18 0.1099 0.7799 0.2578 0.095*
C19 −0.0087 (5) 0.7199 (2) 0.33326 (18) 0.1073 (12)
H19 −0.1322 0.7500 0.3384 0.129*
C20 0.0286 (6) 0.6584 (3) 0.37342 (17) 0.1050 (12)
H20 −0.0696 0.6464 0.4061 0.126*
C21 0.2097 (7) 0.61415 (18) 0.36606 (16) 0.1025 (11)
H21 0.2351 0.5719 0.3935 0.123*
C22 0.3546 (5) 0.63265 (16) 0.31761 (15) 0.0826 (8)
H22 0.4789 0.6029 0.3130 0.099*
C23 0.7204 (3) 0.66501 (15) 0.14376 (13) 0.0821 (8)
H23A 0.7484 0.6219 0.1153 0.123*
H23B 0.8375 0.6704 0.1752 0.123*
H23C 0.7080 0.7114 0.1180 0.123*
C24 −0.1069 (8) 0.3881 (3) 0.41791 (18) 0.0918 (10)
F1A −0.023 (2) 0.3208 (7) 0.4307 (7) 0.117 (2) 0.50
F2AA −0.024 (5) 0.4318 (16) 0.4644 (11) 0.119 (9) 0.25
F2AB −0.145 (4) 0.4449 (16) 0.4585 (14) 0.119 (9) 0.25
F3A −0.3270 (11) 0.3735 (7) 0.4202 (5) 0.117 (2) 0.50
F1B 0.0799 (13) 0.3802 (13) 0.4568 (5) 0.195 (4) 0.50
F2B −0.207 (3) 0.4342 (8) 0.4524 (7) 0.198 (8) 0.50
F3BA −0.115 (3) 0.3139 (9) 0.4299 (11) 0.115 (7) 0.25
F3BB −0.266 (4) 0.3368 (8) 0.4193 (7) 0.102 (4) 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0573 (10) 0.0676 (11) 0.0499 (10) 0.0091 (8) 0.0015 (8) 0.0066 (9)
N1 0.0472 (11) 0.0650 (14) 0.0553 (13) 0.0002 (10) 0.0054 (10) −0.0031 (11)
C1 0.0585 (15) 0.0490 (16) 0.0428 (15) −0.0006 (12) −0.0029 (12) −0.0009 (13)
C2 0.0586 (15) 0.0634 (17) 0.0559 (17) 0.0019 (13) −0.0014 (13) 0.0045 (14)
C3 0.0693 (17) 0.0713 (19) 0.0638 (19) 0.0038 (14) 0.0113 (15) 0.0053 (16)
C4 0.090 (2) 0.0531 (18) 0.0488 (17) −0.0010 (15) 0.0071 (15) −0.0007 (14)
C5 0.093 (2) 0.0546 (17) 0.0588 (19) 0.0143 (14) −0.0046 (16) 0.0058 (14)
C6 0.0672 (16) 0.0603 (18) 0.0586 (18) 0.0161 (13) 0.0030 (14) 0.0035 (14)
C7 0.0488 (14) 0.0631 (17) 0.0510 (15) 0.0025 (12) −0.0011 (11) −0.0015 (14)
C8 0.0538 (15) 0.0548 (17) 0.0472 (15) −0.0013 (13) 0.0027 (12) 0.0036 (13)
C9 0.0674 (17) 0.071 (2) 0.0704 (19) 0.0088 (14) −0.0047 (14) −0.0046 (16)
C10 0.090 (2) 0.075 (2) 0.068 (2) 0.0236 (17) 0.0081 (16) −0.0004 (17)
C11 0.115 (2) 0.065 (2) 0.0565 (19) −0.0038 (19) 0.0126 (18) −0.0072 (15)
C12 0.088 (2) 0.082 (2) 0.0635 (19) −0.0147 (17) −0.0034 (15) −0.0090 (17)
C13 0.0658 (16) 0.071 (2) 0.0626 (18) 0.0000 (14) −0.0019 (14) −0.0063 (15)
C14 0.0676 (16) 0.0649 (18) 0.0533 (16) −0.0013 (13) 0.0024 (12) 0.0065 (15)
C15 0.0595 (15) 0.0558 (17) 0.0643 (17) 0.0046 (12) 0.0016 (13) 0.0036 (14)
C16 0.0691 (16) 0.0635 (18) 0.0700 (19) −0.0056 (13) 0.0023 (15) −0.0066 (15)
C17 0.0615 (16) 0.0561 (18) 0.0605 (18) −0.0021 (14) 0.0034 (14) −0.0140 (15)
C18 0.0753 (19) 0.104 (2) 0.0590 (19) 0.0177 (18) −0.0067 (16) −0.0164 (17)
C19 0.081 (2) 0.171 (4) 0.070 (3) 0.021 (2) 0.004 (2) −0.037 (2)
C20 0.101 (3) 0.141 (4) 0.074 (3) −0.037 (2) 0.028 (2) −0.037 (3)
C21 0.150 (3) 0.074 (2) 0.086 (3) −0.017 (2) 0.040 (2) −0.0079 (18)
C22 0.099 (2) 0.065 (2) 0.084 (2) 0.0102 (16) 0.0231 (19) −0.0049 (18)
C23 0.0596 (16) 0.099 (2) 0.088 (2) −0.0046 (15) 0.0151 (15) 0.0027 (17)
C24 0.125 (4) 0.070 (3) 0.081 (3) 0.005 (3) 0.016 (3) 0.010 (3)
F1A 0.135 (4) 0.110 (4) 0.109 (3) 0.023 (3) 0.047 (3) 0.057 (3)
F2AA 0.21 (3) 0.108 (11) 0.041 (5) −0.056 (15) −0.015 (13) −0.008 (7)
F2AB 0.21 (3) 0.108 (11) 0.041 (5) −0.056 (15) −0.015 (13) −0.008 (7)
F3A 0.135 (4) 0.110 (4) 0.109 (3) 0.023 (3) 0.047 (3) 0.057 (3)
F1B 0.189 (7) 0.299 (13) 0.097 (5) 0.017 (9) −0.009 (4) 0.088 (7)
F2B 0.348 (18) 0.139 (13) 0.111 (9) 0.068 (12) 0.118 (10) 0.014 (7)
F3BA 0.146 (18) 0.068 (8) 0.132 (9) 0.016 (9) 0.053 (13) 0.049 (7)
F3BB 0.158 (12) 0.032 (6) 0.116 (7) −0.018 (7) 0.009 (8) 0.032 (6)

Geometric parameters (Å, °)

O1—C1 1.361 (2) C14—H14B 0.9700
O1—C7 1.448 (2) C15—H15A 0.9700
N1—C23 1.458 (2) C15—H15B 0.9700
N1—C16 1.459 (3) C16—C17 1.493 (3)
N1—C15 1.459 (2) C16—H16A 0.9700
C1—C6 1.373 (3) C16—H16B 0.9700
C1—C2 1.391 (3) C17—C18 1.364 (3)
C2—C3 1.363 (3) C17—C22 1.378 (3)
C2—H2 0.9300 C18—C19 1.374 (4)
C3—C4 1.375 (3) C18—H18 0.9300
C3—H3 0.9300 C19—C20 1.357 (4)
C4—C5 1.371 (3) C19—H19 0.9300
C4—C24 1.493 (4) C20—C21 1.365 (4)
C5—C6 1.378 (3) C20—H20 0.9300
C5—H5 0.9300 C21—C22 1.379 (4)
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.500 (3) C22—H22 0.9300
C7—C14 1.514 (3) C23—H23A 0.9600
C7—H7 0.9800 C23—H23B 0.9600
C8—C9 1.375 (3) C23—H23C 0.9600
C8—C13 1.379 (3) C24—F2B 1.234 (10)
C9—C10 1.379 (3) C24—F1A 1.298 (10)
C9—H9 0.9300 C24—F2AA 1.305 (15)
C10—C11 1.364 (3) C24—F2AB 1.306 (18)
C10—H10 0.9300 C24—F3BA 1.307 (16)
C11—C12 1.373 (3) C24—F3BB 1.323 (13)
C11—H11 0.9300 C24—F3A 1.384 (8)
C12—C13 1.380 (3) C24—F1B 1.392 (8)
C12—H12 0.9300 F2AA—F2AB 0.79 (4)
C13—H13 0.9300 F1B—F3BA 1.74 (2)
C14—C15 1.513 (3) F3BA—F3BB 1.03 (2)
C14—H14A 0.9700
C1—O1—C7 119.38 (16) C18—C17—C22 117.7 (3)
C23—N1—C16 110.24 (18) C18—C17—C16 121.8 (3)
C23—N1—C15 110.93 (18) C22—C17—C16 120.5 (2)
C16—N1—C15 110.37 (18) C17—C18—C19 121.7 (3)
O1—C1—C6 125.7 (2) C17—C18—H18 119.2
O1—C1—C2 115.0 (2) C19—C18—H18 119.2
C6—C1—C2 119.3 (2) C20—C19—C18 119.7 (3)
C3—C2—C1 120.2 (2) C20—C19—H19 120.1
C3—C2—H2 119.9 C18—C19—H19 120.1
C1—C2—H2 119.9 C19—C20—C21 120.3 (3)
C2—C3—C4 120.5 (2) C19—C20—H20 119.9
C2—C3—H3 119.7 C21—C20—H20 119.9
C4—C3—H3 119.7 C20—C21—C22 119.4 (3)
C5—C4—C3 119.2 (2) C20—C21—H21 120.3
C5—C4—C24 120.3 (3) C22—C21—H21 120.3
C3—C4—C24 120.5 (3) C17—C22—C21 121.3 (3)
C4—C5—C6 120.9 (2) C17—C22—H22 119.4
C4—C5—H5 119.6 C21—C22—H22 119.4
C6—C5—H5 119.6 N1—C23—H23A 109.5
C1—C6—C5 119.8 (2) N1—C23—H23B 109.5
C1—C6—H6 120.1 H23A—C23—H23B 109.5
C5—C6—H6 120.1 N1—C23—H23C 109.5
O1—C7—C8 111.09 (17) H23A—C23—H23C 109.5
O1—C7—C14 105.45 (17) H23B—C23—H23C 109.5
C8—C7—C14 113.11 (19) F2B—C24—F1A 131.9 (9)
O1—C7—H7 109.0 F2B—C24—F2AA 53.7 (12)
C8—C7—H7 109.0 F1A—C24—F2AA 103.0 (14)
C14—C7—H7 109.0 F1A—C24—F2AB 128.6 (15)
C9—C8—C13 117.9 (2) F2B—C24—F3BA 120.5 (10)
C9—C8—C7 121.1 (2) F2AA—C24—F3BA 116.7 (17)
C13—C8—C7 121.0 (2) F2AB—C24—F3BA 128 (2)
C8—C9—C10 121.3 (2) F2B—C24—F3BB 92.5 (11)
C8—C9—H9 119.3 F1A—C24—F3BB 71.8 (8)
C10—C9—H9 119.3 F2AA—C24—F3BB 130.8 (15)
C11—C10—C9 119.8 (3) F2AB—C24—F3BB 110.5 (17)
C11—C10—H10 120.1 F3BA—C24—F3BB 46.2 (9)
C9—C10—H10 120.1 F2B—C24—F3A 66.2 (9)
C10—C11—C12 120.2 (3) F1A—C24—F3A 102.7 (6)
C10—C11—H11 119.9 F2AA—C24—F3A 116.9 (13)
C12—C11—H11 119.9 F2AB—C24—F3A 85.9 (13)
C11—C12—C13 119.5 (2) F3BA—C24—F3A 77.0 (8)
C11—C12—H12 120.3 F2B—C24—F1B 99.1 (9)
C13—C12—H12 120.3 F1A—C24—F1B 58.3 (7)
C8—C13—C12 121.3 (2) F2AA—C24—F1B 48.6 (9)
C8—C13—H13 119.3 F2AB—C24—F1B 82.7 (12)
C12—C13—H13 119.3 F3BA—C24—F1B 80.3 (11)
C15—C14—C7 113.6 (2) F3BB—C24—F1B 121.9 (8)
C15—C14—H14A 108.8 F3A—C24—F1B 140.1 (5)
C7—C14—H14A 108.8 F2B—C24—C4 115.4 (8)
C15—C14—H14B 108.8 F1A—C24—C4 112.4 (6)
C7—C14—H14B 108.8 F2AA—C24—C4 112.0 (14)
H14A—C14—H14B 107.7 F2AB—C24—C4 111.9 (17)
N1—C15—C14 113.64 (18) F3BA—C24—C4 120.3 (10)
N1—C15—H15A 108.8 F3BB—C24—C4 115.0 (7)
C14—C15—H15A 108.8 F3A—C24—C4 109.3 (5)
N1—C15—H15B 108.8 F1B—C24—C4 110.4 (4)
C14—C15—H15B 108.8 F2AB—F2AA—C24 72.6 (18)
H15A—C15—H15B 107.7 F2AA—F2AB—C24 72 (2)
N1—C16—C17 113.22 (18) C24—F1B—F3BA 47.7 (7)
N1—C16—H16A 108.9 F3BB—F3BA—C24 67.7 (10)
C17—C16—H16A 108.9 F3BB—F3BA—F1B 115.4 (15)
N1—C16—H16B 108.9 C24—F3BA—F1B 52.0 (7)
C17—C16—H16B 108.9 F3BA—F3BB—C24 66.1 (12)
H16A—C16—H16B 107.7
C7—O1—C1—C6 −6.9 (3) C3—C4—C24—F3BA 122.0 (11)
C7—O1—C1—C2 172.21 (18) C5—C4—C24—F3BB −111.0 (12)
O1—C1—C2—C3 −178.6 (2) C3—C4—C24—F3BB 69.8 (12)
C6—C1—C2—C3 0.6 (3) C5—C4—C24—F3A −144.7 (7)
C1—C2—C3—C4 1.1 (4) C3—C4—C24—F3A 36.1 (8)
C2—C3—C4—C5 −1.8 (4) C5—C4—C24—F1B 31.7 (12)
C2—C3—C4—C24 177.4 (3) C3—C4—C24—F1B −147.5 (11)
C3—C4—C5—C6 0.9 (4) F2B—C24—F2AA—F2AB −9(4)
C24—C4—C5—C6 −178.3 (3) F1A—C24—F2AA—F2AB −142 (4)
O1—C1—C6—C5 177.6 (2) F3BA—C24—F2AA—F2AB −119 (4)
C2—C1—C6—C5 −1.5 (3) F3BB—C24—F2AA—F2AB −65 (5)
C4—C5—C6—C1 0.8 (4) F3A—C24—F2AA—F2AB −30 (5)
C1—O1—C7—C8 82.8 (2) F1B—C24—F2AA—F2AB −165 (5)
C1—O1—C7—C14 −154.29 (17) C4—C24—F2AA—F2AB 97 (4)
O1—C7—C8—C9 −139.3 (2) F2B—C24—F2AB—F2AA 158 (9)
C14—C7—C8—C9 102.3 (2) F1A—C24—F2AB—F2AA 50 (5)
O1—C7—C8—C13 43.0 (3) F3BA—C24—F2AB—F2AA 83 (5)
C14—C7—C8—C13 −75.3 (3) F3BB—C24—F2AB—F2AA 133 (4)
C13—C8—C9—C10 0.4 (4) F3A—C24—F2AB—F2AA 153 (4)
C7—C8—C9—C10 −177.3 (2) F1B—C24—F2AB—F2AA 12 (4)
C8—C9—C10—C11 0.0 (4) C4—C24—F2AB—F2AA −98 (4)
C9—C10—C11—C12 −0.5 (4) F2B—C24—F1B—F3BA 119.6 (11)
C10—C11—C12—C13 0.5 (4) F1A—C24—F1B—F3BA −14.4 (13)
C9—C8—C13—C12 −0.4 (4) F2AA—C24—F1B—F3BA 139.4 (18)
C7—C8—C13—C12 177.3 (2) F2AB—C24—F1B—F3BA 131 (2)
C11—C12—C13—C8 −0.1 (4) F3BB—C24—F1B—F3BA 20.9 (13)
O1—C7—C14—C15 64.4 (2) F3A—C24—F1B—F3BA 55.9 (16)
C8—C7—C14—C15 −173.96 (18) C4—C24—F1B—F3BA −118.8 (9)
C23—N1—C15—C14 74.1 (2) F2B—C24—F3BA—F3BB 60 (2)
C16—N1—C15—C14 −163.38 (18) F1A—C24—F3BA—F3BB −176 (4)
C7—C14—C15—N1 62.1 (2) F2AA—C24—F3BA—F3BB 122 (2)
C23—N1—C16—C17 −162.2 (2) F2AB—C24—F3BA—F3BB 82 (2)
C15—N1—C16—C17 74.9 (2) F3A—C24—F3BA—F3BB 8.2 (14)
N1—C16—C17—C18 −123.5 (2) F1B—C24—F3BA—F3BB 155.2 (16)
N1—C16—C17—C22 59.1 (3) C4—C24—F3BA—F3BB −96.7 (13)
C22—C17—C18—C19 −0.8 (4) F2B—C24—F3BA—F1B −95.0 (12)
C16—C17—C18—C19 −178.3 (2) F1A—C24—F3BA—F1B 29 (3)
C17—C18—C19—C20 0.2 (4) F2AA—C24—F3BA—F1B −33.1 (12)
C18—C19—C20—C21 0.1 (5) F2AB—C24—F3BA—F1B −72.8 (16)
C19—C20—C21—C22 0.2 (5) F3BB—C24—F3BA—F1B −155.2 (16)
C18—C17—C22—C21 1.1 (4) F3A—C24—F3BA—F1B −146.9 (7)
C16—C17—C22—C21 178.7 (2) C4—C24—F3BA—F1B 108.1 (8)
C20—C21—C22—C17 −0.8 (4) C24—F1B—F3BA—F3BB −25.5 (15)
C5—C4—C24—F2B 143.1 (14) F1B—F3BA—F3BB—C24 21.5 (11)
C3—C4—C24—F2B −36.1 (15) F2B—C24—F3BB—F3BA −131.5 (18)
C5—C4—C24—F1A −31.4 (10) F1A—C24—F3BB—F3BA 2(2)
C3—C4—C24—F1A 149.4 (9) F2AA—C24—F3BB—F3BA −90 (2)
C5—C4—C24—F2AA 84.1 (17) F2AB—C24—F3BB—F3BA −123 (2)
C3—C4—C24—F2AA −95.1 (17) F3A—C24—F3BB—F3BA −165 (3)
C5—C4—C24—F2AB 121.9 (13) F1B—C24—F3BB—F3BA −29 (2)
C3—C4—C24—F2AB −57.3 (14) C4—C24—F3BB—F3BA 108.9 (16)
C5—C4—C24—F3BA −58.8 (12)

Table 1 C—H···π interactions (Å, °)

D H Centroid C-H H···Cg D···Cg C-H···Cg
C10 H10 Cg3i 0.93 2.90 3.588 (3) 132
C18 H18 Cg1ii 0.93 3.08 3.976 (4) 162
C19 H19 Cg2ii 0.93 2.94 3.719 (4) 143

Cg1 is the centroid of ring A (C1–C6), Cg2 that of ring B (C8–C13) and Cg3 that of ring C (C17–C22). Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2167).

References

  1. Benefield, P., Heel, R. C. & Lewis, S. P. (1986). Drugs, 32, 481–508. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Childs, S. L., Chyll, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. & Stahly, G. P. (2004). J. Am. Chem. Soc.126, 13335–13342. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Feighner, J. P. & Boyer, W. F. (1991). Selective Serotonin Re-uptake Inhibitors New York: Wiley.
  7. Markowitz, J. S., Brown, C. S. & Moore, T. R. (1999). Ann. Pharmacother.33, 73–85. [DOI] [PubMed]
  8. Robertson, D. W., Jones, N. D., Swartzendruber, J. K., Yang, K. S. & Wong, D. T. (1988). J. Med. Chem.31, 185–189. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wong, D., Bymaster, F. & Engleman, E. (1995). Life Sci.57, 411–441. [DOI] [PubMed]
  11. Zhu, S.-P., Mao, Z. F., Huang, J. & Wang, J.-Y. (2009). Clin. Exp. Pharmacol. Physiol.36, e1–e5.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012699/su2167sup1.cif

e-66-o1146-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012699/su2167Isup2.hkl

e-66-o1146-Isup2.hkl (258.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES