Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 2;66(Pt 5):o1025. doi: 10.1107/S1600536810012110

N′-(2-Chloro­benzyl­idene)-2-hydr­oxy-3-methyl­benzohydrazide

You-Yue Han a,*, Qiu-Rong Zhao a
PMCID: PMC2979247  PMID: 21579089

Abstract

In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 3.4 (5)° and the mol­ecule adopts an E configuration with respect to the C=N bond. There is an intra­molecular O—H⋯O hydrogen bond in the mol­ecule, which generates an S(6) loop. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming C(4) chains running along the a axis.

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010); Cukurovali et al. (2006). For related structures, see: Mohd Lair et al. (2009); Lin & Sang (2009); Suleiman Gwaram et al. (2010); Li & Ban (2009); Lo & Ng (2009); Ning & Xu (2009); Zhu et al. (2009). For reference structural data, see: Allen et al. (1987).graphic file with name e-66-o1025-scheme1.jpg

Experimental

Crystal data

  • C15H13ClN2O2

  • M r = 288.72

  • Monoclinic, Inline graphic

  • a = 7.084 (2) Å

  • b = 27.010 (3) Å

  • c = 7.755 (2) Å

  • β = 111.229 (3)°

  • V = 1383.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.967, T max = 0.973

  • 3856 measured reflections

  • 1981 independent reflections

  • 1145 reflections with I > 2σ(I)

  • R int = 0.151

Refinement

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.220

  • S = 0.92

  • 1981 reflections

  • 183 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983), 470 Friedel pairs

  • Flack parameter: 0.29 (17)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012110/hb5388sup1.cif

e-66-o1025-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012110/hb5388Isup2.hkl

e-66-o1025-Isup2.hkl (97.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.41 3.202 (7) 154
O2—H2⋯O1 0.82 1.92 2.641 (7) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C). The authors thank Mr Gang Wu of Chuzhou University for his help with growing the crystals.

supplementary crystallographic information

Comment

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the molecule of the title compound, Fig. 1, the dihedral angle between the two benzene rings is 3.4 (5)°. The molecule adopts an E configuration with respect to the C═N bond. There is an intramolecular O–H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable with those in the similar compounds (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 1) to form chains running along the a axis (Fig. 2).

Experimental

A mixture of 2-chlorobenzaldehyde (0.140 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

Refinement

H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, N–H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl C and O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular O–H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The packing of (I) viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H13ClN2O2 F(000) = 600
Mr = 288.72 Dx = 1.387 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 975 reflections
a = 7.084 (2) Å θ = 2.6–24.5°
b = 27.010 (3) Å µ = 0.28 mm1
c = 7.755 (2) Å T = 298 K
β = 111.229 (3)° Block, colorless
V = 1383.1 (6) Å3 0.12 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 1981 independent reflections
Radiation source: fine-focus sealed tube 1145 reflections with I > 2σ(I)
graphite Rint = 0.151
ω scans θmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −4→9
Tmin = 0.967, Tmax = 0.973 k = −34→34
3856 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083 H-atom parameters constrained
wR(F2) = 0.220 w = 1/[σ2(Fo2) + (0.1271P)2] where P = (Fo2 + 2Fc2)/3
S = 0.92 (Δ/σ)max = 0.001
1981 reflections Δρmax = 0.39 e Å3
183 parameters Δρmin = −0.45 e Å3
2 restraints Absolute structure: Flack (1983), 470 Fridel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.29 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.3375 (3) 0.43050 (6) 0.8129 (3) 0.0785 (7)
N1 0.2710 (8) 0.24748 (18) 0.8198 (7) 0.0526 (14)
H1 0.3490 0.2572 0.9277 0.063*
N2 0.2275 (8) 0.2780 (2) 0.6677 (6) 0.0503 (13)
O1 0.0826 (8) 0.18614 (19) 0.6388 (6) 0.0704 (15)
O2 0.1832 (8) 0.09660 (18) 0.7787 (7) 0.0666 (14)
H2 0.1443 0.1174 0.6964 0.100*
C1 0.2311 (9) 0.1713 (2) 0.9627 (8) 0.0462 (15)
C2 0.2276 (10) 0.1188 (2) 0.9446 (8) 0.0505 (16)
C3 0.2680 (10) 0.0889 (3) 1.1021 (10) 0.0599 (19)
C4 0.3049 (11) 0.1111 (3) 1.2688 (9) 0.065 (2)
H4 0.3328 0.0912 1.3730 0.078*
C5 0.3026 (12) 0.1623 (3) 1.2901 (11) 0.067 (2)
H5 0.3253 0.1762 1.4055 0.081*
C6 0.2661 (9) 0.1919 (3) 1.1361 (8) 0.0550 (17)
H6 0.2648 0.2262 1.1484 0.066*
C7 0.1867 (9) 0.2013 (2) 0.7943 (8) 0.0489 (16)
C8 0.2946 (10) 0.3218 (3) 0.7035 (9) 0.0485 (15)
H8 0.3665 0.3312 0.8251 0.058*
C9 0.2591 (9) 0.3575 (2) 0.5540 (8) 0.0445 (14)
C10 0.2758 (10) 0.4085 (2) 0.5897 (9) 0.0548 (18)
C11 0.2424 (13) 0.4419 (3) 0.4451 (12) 0.070 (2)
H11 0.2509 0.4757 0.4689 0.084*
C12 0.1983 (14) 0.4256 (3) 0.2722 (13) 0.078 (2)
H12 0.1778 0.4485 0.1775 0.093*
C13 0.1823 (11) 0.3753 (3) 0.2297 (9) 0.066 (2)
H13 0.1523 0.3645 0.1087 0.079*
C14 0.2122 (10) 0.3417 (3) 0.3723 (9) 0.0555 (18)
H14 0.2008 0.3080 0.3462 0.067*
C15 0.2730 (15) 0.0336 (3) 1.0799 (14) 0.085 (3)
H15A 0.3750 0.0251 1.0306 0.127*
H15B 0.1433 0.0224 0.9969 0.127*
H15C 0.3037 0.0180 1.1982 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1018 (16) 0.0557 (10) 0.0756 (12) −0.0051 (12) 0.0294 (10) −0.0184 (10)
N1 0.063 (3) 0.044 (3) 0.035 (2) −0.005 (3) −0.001 (2) 0.005 (2)
N2 0.056 (3) 0.049 (3) 0.034 (2) −0.002 (3) 0.002 (2) 0.002 (2)
O1 0.100 (4) 0.057 (3) 0.034 (2) −0.024 (3) 0.001 (2) −0.001 (2)
O2 0.087 (4) 0.049 (3) 0.058 (3) −0.002 (3) 0.020 (3) −0.005 (2)
C1 0.042 (3) 0.046 (3) 0.039 (3) −0.001 (3) 0.001 (3) 0.001 (3)
C2 0.050 (4) 0.049 (3) 0.043 (3) −0.003 (3) 0.005 (3) 0.006 (3)
C3 0.052 (4) 0.056 (4) 0.062 (5) 0.001 (3) 0.009 (3) 0.015 (3)
C4 0.063 (5) 0.075 (5) 0.050 (4) −0.001 (4) 0.012 (4) 0.025 (4)
C5 0.066 (5) 0.089 (6) 0.043 (3) −0.008 (4) 0.015 (3) −0.003 (4)
C6 0.059 (4) 0.059 (4) 0.038 (3) −0.007 (3) 0.007 (3) 0.001 (3)
C7 0.051 (4) 0.049 (3) 0.034 (3) −0.005 (3) 0.001 (3) −0.003 (3)
C8 0.048 (4) 0.049 (4) 0.039 (3) −0.007 (3) 0.003 (2) 0.001 (3)
C9 0.046 (3) 0.043 (3) 0.041 (3) 0.002 (3) 0.011 (3) 0.003 (3)
C10 0.058 (4) 0.044 (3) 0.060 (4) −0.003 (3) 0.018 (3) −0.005 (3)
C11 0.078 (5) 0.047 (4) 0.082 (6) 0.009 (4) 0.024 (4) 0.012 (4)
C12 0.085 (6) 0.071 (5) 0.074 (5) 0.010 (5) 0.024 (4) 0.032 (5)
C13 0.066 (5) 0.082 (5) 0.038 (3) 0.001 (4) 0.006 (3) 0.012 (3)
C14 0.051 (4) 0.061 (4) 0.048 (4) −0.004 (3) 0.011 (3) 0.008 (3)
C15 0.093 (6) 0.057 (4) 0.100 (7) 0.006 (5) 0.028 (5) 0.024 (5)

Geometric parameters (Å, °)

Cl1—C10 1.730 (7) C5—H5 0.9300
N1—C7 1.365 (8) C6—H6 0.9300
N1—N2 1.379 (7) C8—C9 1.458 (9)
N1—H1 0.8600 C8—H8 0.9300
N2—C8 1.268 (8) C9—C14 1.392 (10)
O1—C7 1.234 (7) C9—C10 1.400 (8)
O2—C2 1.350 (8) C10—C11 1.392 (10)
O2—H2 0.8200 C11—C12 1.336 (12)
C1—C6 1.392 (9) C11—H11 0.9300
C1—C2 1.423 (8) C12—C13 1.392 (12)
C1—C7 1.472 (9) C12—H12 0.9300
C2—C3 1.405 (9) C13—C14 1.387 (10)
C3—C4 1.362 (10) C13—H13 0.9300
C3—C15 1.506 (12) C14—H14 0.9300
C4—C5 1.394 (11) C15—H15A 0.9600
C4—H4 0.9300 C15—H15B 0.9600
C5—C6 1.382 (10) C15—H15C 0.9600
C7—N1—N2 118.1 (4) N2—C8—H8 120.0
C7—N1—H1 121.0 C9—C8—H8 120.0
N2—N1—H1 121.0 C14—C9—C10 118.3 (6)
C8—N2—N1 114.9 (5) C14—C9—C8 120.7 (6)
C2—O2—H2 109.5 C10—C9—C8 121.0 (6)
C6—C1—C2 119.0 (6) C11—C10—C9 120.0 (6)
C6—C1—C7 122.8 (6) C11—C10—Cl1 119.4 (5)
C2—C1—C7 118.1 (5) C9—C10—Cl1 120.6 (5)
O2—C2—C3 118.4 (6) C12—C11—C10 120.3 (7)
O2—C2—C1 121.8 (5) C12—C11—H11 119.8
C3—C2—C1 119.8 (6) C10—C11—H11 119.8
C4—C3—C2 118.7 (7) C11—C12—C13 121.9 (7)
C4—C3—C15 122.7 (7) C11—C12—H12 119.1
C2—C3—C15 118.5 (7) C13—C12—H12 119.1
C3—C4—C5 122.9 (7) C14—C13—C12 118.3 (7)
C3—C4—H4 118.6 C14—C13—H13 120.9
C5—C4—H4 118.6 C12—C13—H13 120.9
C6—C5—C4 118.6 (7) C13—C14—C9 121.2 (7)
C6—C5—H5 120.7 C13—C14—H14 119.4
C4—C5—H5 120.7 C9—C14—H14 119.4
C5—C6—C1 121.0 (7) C3—C15—H15A 109.5
C5—C6—H6 119.5 C3—C15—H15B 109.5
C1—C6—H6 119.5 H15A—C15—H15B 109.5
O1—C7—N1 121.4 (6) C3—C15—H15C 109.5
O1—C7—C1 122.9 (6) H15A—C15—H15C 109.5
N1—C7—C1 115.7 (5) H15B—C15—H15C 109.5
N2—C8—C9 120.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.41 3.202 (7) 154
O2—H2···O1 0.82 1.92 2.641 (7) 146

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5388).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [DOI] [PubMed]
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721. [DOI] [PMC free article] [PubMed]
  7. Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. [DOI] [PMC free article] [PubMed]
  8. Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650. [DOI] [PMC free article] [PubMed]
  9. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. [DOI] [PMC free article] [PubMed]
  10. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [DOI] [PMC free article] [PubMed]
  11. Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906. [DOI] [PMC free article] [PubMed]
  12. Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem.63, 688–699.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012110/hb5388sup1.cif

e-66-o1025-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012110/hb5388Isup2.hkl

e-66-o1025-Isup2.hkl (97.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES