Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1110. doi: 10.1107/S1600536810013784

(2E)-3-(4-Bromo­phen­yl)-1-(2-methyl-4-phenyl-3-quinol­yl)prop-2-en-1-one

R Prasath a, S Sarveswari a, V Vijayakumar a,, T Narasimhamurthy b, Edward R T Tiekink c,*
PMCID: PMC2979249  PMID: 21579162

Abstract

The conformation about the ethene bond [1.316 (3) Å] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)° with the benzene and bromo-substituted benzene rings, respectively. Highlighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)°.

Related literature

For general background to quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1998); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For inter­est in the biological activities of chalcones, see: Dimmock et al. (1999).graphic file with name e-66-o1110-scheme1.jpg

Experimental

Crystal data

  • C25H18BrNO

  • M r = 428.31

  • Triclinic, Inline graphic

  • a = 6.6407 (3) Å

  • b = 10.0395 (4) Å

  • c = 15.5193 (6) Å

  • α = 92.192 (2)°

  • β = 95.234 (2)°

  • γ = 105.869 (2)°

  • V = 988.92 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 293 K

  • 0.28 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.596, T max = 0.746

  • 15973 measured reflections

  • 3470 independent reflections

  • 2545 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.01

  • 3470 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013784/hg2673sup1.cif

e-66-o1110-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013784/hg2673Isup2.hkl

e-66-o1110-Isup2.hkl (166.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1998) are known to contain the quinoline nucleus. Quinolines are also known to possess attractive applications as pharmaceuticals and agrochemicals (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The open chain flavanoids, the chalcones, also possess a variety of biological activities (Dimmock et al., 1999). Herein, we report the synthesis and crystal structure of a molecule containing both quinoline and chalcone groups, (I).

In the structure of (I), the conformation about the C17═C18 [1.316 (3) Å] bond is E, Fig. 1. The chalcone residue is essentially planar as seen in the O1–C16–C17–C18 torsion angle of 173.7 (2) °. While the planarity extends out to the 4-bromobenzene ring [the C17–C18–C19–C20 torsion angle is -175.6 (2) °] this is not true for the quinoline residue (r.m.s. deviation = 0.0164 Å) which is twisted out of the plane through the chalcone residue: the C7–C8–C16–C17 torsion angle is 112.9 (2) °. In the same way, the C7-bound benzene ring is significantly twisted out of the plane of the quinoline ring as seen in the C6–C7–C10–C11 torsion angle of -67.0 (3) °. The non-planar nature of the molecule is reflected in the dihedral angles formed between the quinoline molecule and the benzene and bromo-substituted benzene rings of 67.21 (10) and 71.68 (10) °, respectively; the dihedral angle formed between the benzene rings is 58.57 (12) °.

Except for some rather weak π···π interactions [ring centroid(N1,C1,C6–C9)···ring centroid(C1–C6)i distance = 3.8124 (13) Å for i: 2-x, 2-y, -z] between centrosymmetrically related quinoline rings, no specific intermolecular forces are evident in the crystal packing.

Experimental

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g 0.01 M) and 4-bromobenzaldehyde (1.84 g 0.01 M), and a catalytic amount of KOH in distilled ethanol was stirred for about 12 h. The resulting mixture was concentrated to remove ethanol, poured onto ice, and neutralized with dilute acetic acid. The resultant solid was filtered, dried, purified by column chromatography using 1:1 mixture of ethyl acetate and petroleum ether, and recrystallized using ethyl acetate; yield: 65 % and m.pt: 459 K.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Crystal data

C25H18BrNO Z = 2
Mr = 428.31 F(000) = 436
Triclinic, P1 Dx = 1.438 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6407 (3) Å Cell parameters from 4795 reflections
b = 10.0395 (4) Å θ = 2.6–23.7°
c = 15.5193 (6) Å µ = 2.09 mm1
α = 92.192 (2)° T = 293 K
β = 95.234 (2)° Plate, colourless
γ = 105.869 (2)° 0.28 × 0.21 × 0.14 mm
V = 988.92 (7) Å3

Data collection

Bruker SMART APEX CCD diffractometer 3470 independent reflections
Radiation source: fine-focus sealed tube 2545 reflections with I > 2σ(I)
graphite Rint = 0.027
ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −7→7
Tmin = 0.596, Tmax = 0.746 k = −11→11
15973 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.3122P] where P = (Fo2 + 2Fc2)/3
3470 reflections (Δ/σ)max = 0.001
254 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.08613 (5) 0.24943 (4) 0.49005 (2) 0.08720 (16)
O1 1.1467 (3) 0.65490 (17) 0.15079 (12) 0.0608 (5)
N1 0.7271 (3) 0.91386 (18) 0.04962 (12) 0.0419 (4)
C1 0.8532 (3) 1.0419 (2) 0.07979 (14) 0.0377 (5)
C2 0.8037 (4) 1.1593 (2) 0.04646 (15) 0.0475 (6)
H2 0.6909 1.1479 0.0040 0.057*
C3 0.9207 (4) 1.2891 (2) 0.07632 (17) 0.0540 (6)
H3 0.8868 1.3658 0.0541 0.065*
C4 1.0909 (4) 1.3087 (2) 0.13987 (16) 0.0527 (6)
H4 1.1685 1.3982 0.1598 0.063*
C5 1.1440 (4) 1.1977 (2) 0.17279 (14) 0.0431 (5)
H5 1.2583 1.2119 0.2148 0.052*
C6 1.0268 (3) 1.0609 (2) 0.14360 (13) 0.0348 (5)
C7 1.0703 (3) 0.9398 (2) 0.17656 (13) 0.0344 (5)
C8 0.9391 (3) 0.8119 (2) 0.14548 (14) 0.0361 (5)
C9 0.7675 (3) 0.8033 (2) 0.08138 (14) 0.0395 (5)
C10 1.2501 (3) 0.9522 (2) 0.24382 (13) 0.0361 (5)
C11 1.4566 (4) 1.0046 (3) 0.22479 (16) 0.0522 (6)
H11 1.4833 1.0335 0.1697 0.063*
C12 1.6221 (4) 1.0137 (3) 0.28757 (19) 0.0627 (7)
H12 1.7597 1.0486 0.2743 0.075*
C13 1.5861 (4) 0.9721 (3) 0.36906 (18) 0.0591 (7)
H13 1.6984 0.9783 0.4109 0.071*
C14 1.3823 (4) 0.9209 (3) 0.38841 (16) 0.0563 (6)
H14 1.3568 0.8921 0.4436 0.068*
C15 1.2162 (4) 0.9120 (2) 0.32667 (14) 0.0451 (5)
H15 1.0791 0.8784 0.3409 0.054*
C16 0.9910 (4) 0.6815 (2) 0.17362 (15) 0.0433 (5)
C17 0.8555 (4) 0.5880 (2) 0.22805 (16) 0.0488 (6)
H17 0.8854 0.5047 0.2391 0.059*
C18 0.6945 (4) 0.6130 (2) 0.26255 (15) 0.0457 (6)
H18 0.6660 0.6964 0.2503 0.055*
C19 0.5548 (3) 0.5238 (2) 0.31818 (15) 0.0444 (5)
C20 0.3842 (4) 0.5633 (3) 0.34362 (17) 0.0547 (6)
H20 0.3621 0.6461 0.3258 0.066*
C21 0.2463 (4) 0.4832 (3) 0.39470 (17) 0.0602 (7)
H21 0.1321 0.5112 0.4110 0.072*
C22 0.2791 (4) 0.3614 (3) 0.42126 (16) 0.0524 (6)
C23 0.4469 (4) 0.3192 (3) 0.39775 (17) 0.0580 (7)
H23 0.4680 0.2365 0.4161 0.070*
C24 0.5839 (4) 0.4003 (2) 0.34676 (17) 0.0550 (6)
H24 0.6984 0.3719 0.3311 0.066*
C26 0.6217 (4) 0.6658 (2) 0.04495 (17) 0.0538 (6)
H26A 0.5103 0.6364 0.0813 0.081*
H26B 0.6990 0.5979 0.0430 0.081*
H26C 0.5630 0.6755 −0.0126 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0736 (2) 0.0933 (3) 0.0832 (2) −0.00470 (17) 0.02395 (17) 0.03235 (18)
O1 0.0616 (11) 0.0476 (10) 0.0839 (13) 0.0264 (8) 0.0242 (10) 0.0157 (9)
N1 0.0385 (10) 0.0394 (11) 0.0463 (11) 0.0092 (8) 0.0020 (8) 0.0015 (9)
C1 0.0377 (11) 0.0369 (13) 0.0403 (12) 0.0122 (10) 0.0072 (10) 0.0035 (10)
C2 0.0487 (13) 0.0461 (15) 0.0498 (14) 0.0180 (11) −0.0005 (11) 0.0081 (11)
C3 0.0643 (16) 0.0394 (14) 0.0637 (16) 0.0230 (12) 0.0047 (13) 0.0121 (12)
C4 0.0617 (15) 0.0318 (13) 0.0623 (16) 0.0101 (11) 0.0052 (13) −0.0014 (11)
C5 0.0463 (12) 0.0377 (13) 0.0433 (13) 0.0099 (10) 0.0007 (10) 0.0001 (10)
C6 0.0382 (11) 0.0316 (12) 0.0363 (12) 0.0102 (9) 0.0106 (9) 0.0029 (9)
C7 0.0337 (11) 0.0359 (12) 0.0355 (11) 0.0104 (9) 0.0099 (9) 0.0041 (9)
C8 0.0365 (11) 0.0323 (12) 0.0402 (12) 0.0088 (9) 0.0095 (10) 0.0049 (9)
C9 0.0383 (11) 0.0347 (12) 0.0446 (13) 0.0079 (9) 0.0080 (10) 0.0004 (10)
C10 0.0407 (12) 0.0288 (11) 0.0399 (12) 0.0116 (9) 0.0046 (10) 0.0006 (9)
C11 0.0430 (13) 0.0664 (16) 0.0482 (14) 0.0145 (12) 0.0112 (12) 0.0039 (12)
C12 0.0369 (13) 0.0794 (19) 0.0726 (19) 0.0188 (13) 0.0062 (13) −0.0074 (15)
C13 0.0556 (16) 0.0624 (17) 0.0600 (18) 0.0249 (13) −0.0123 (13) −0.0056 (13)
C14 0.0676 (17) 0.0538 (15) 0.0437 (14) 0.0131 (13) −0.0052 (13) 0.0080 (11)
C15 0.0448 (13) 0.0447 (13) 0.0422 (13) 0.0059 (10) 0.0050 (11) 0.0061 (10)
C16 0.0461 (13) 0.0340 (12) 0.0482 (14) 0.0087 (10) 0.0048 (11) 0.0029 (10)
C17 0.0563 (14) 0.0332 (13) 0.0579 (15) 0.0122 (11) 0.0097 (12) 0.0089 (11)
C18 0.0529 (14) 0.0315 (12) 0.0524 (14) 0.0111 (10) 0.0051 (12) 0.0043 (10)
C19 0.0467 (13) 0.0358 (13) 0.0469 (14) 0.0058 (10) 0.0025 (11) 0.0035 (10)
C20 0.0575 (15) 0.0472 (14) 0.0639 (16) 0.0184 (12) 0.0138 (13) 0.0121 (12)
C21 0.0506 (15) 0.0665 (18) 0.0658 (17) 0.0163 (13) 0.0162 (13) 0.0077 (14)
C22 0.0493 (14) 0.0513 (15) 0.0471 (14) −0.0020 (12) 0.0036 (11) 0.0073 (11)
C23 0.0620 (16) 0.0439 (14) 0.0653 (17) 0.0088 (12) 0.0061 (13) 0.0146 (12)
C24 0.0489 (14) 0.0479 (15) 0.0687 (17) 0.0117 (11) 0.0122 (13) 0.0087 (13)
C26 0.0485 (13) 0.0431 (14) 0.0615 (16) 0.0026 (11) −0.0037 (12) −0.0033 (12)

Geometric parameters (Å, °)

Br1—C22 1.897 (2) C12—H12 0.9300
O1—C16 1.215 (3) C13—C14 1.375 (4)
N1—C9 1.314 (3) C13—H13 0.9300
N1—C1 1.367 (3) C14—C15 1.375 (3)
C1—C2 1.411 (3) C14—H14 0.9300
C1—C6 1.415 (3) C15—H15 0.9300
C2—C3 1.360 (3) C16—C17 1.463 (3)
C2—H2 0.9300 C17—C18 1.316 (3)
C3—C4 1.396 (3) C17—H17 0.9300
C3—H3 0.9300 C18—C19 1.469 (3)
C4—C5 1.361 (3) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.383 (3)
C5—C6 1.415 (3) C19—C24 1.389 (3)
C5—H5 0.9300 C20—C21 1.376 (3)
C6—C7 1.427 (3) C20—H20 0.9300
C7—C8 1.380 (3) C21—C22 1.371 (4)
C7—C10 1.487 (3) C21—H21 0.9300
C8—C9 1.424 (3) C22—C23 1.369 (4)
C8—C16 1.513 (3) C23—C24 1.376 (3)
C9—C26 1.507 (3) C23—H23 0.9300
C10—C15 1.382 (3) C24—H24 0.9300
C10—C11 1.392 (3) C26—H26A 0.9600
C11—C12 1.381 (3) C26—H26B 0.9600
C11—H11 0.9300 C26—H26C 0.9600
C12—C13 1.368 (4)
C9—N1—C1 118.80 (18) C15—C14—C13 120.4 (2)
N1—C1—C2 117.86 (19) C15—C14—H14 119.8
N1—C1—C6 122.80 (18) C13—C14—H14 119.8
C2—C1—C6 119.33 (19) C14—C15—C10 120.9 (2)
C3—C2—C1 120.1 (2) C14—C15—H15 119.6
C3—C2—H2 120.0 C10—C15—H15 119.6
C1—C2—H2 120.0 O1—C16—C17 120.1 (2)
C2—C3—C4 121.0 (2) O1—C16—C8 119.41 (19)
C2—C3—H3 119.5 C17—C16—C8 120.4 (2)
C4—C3—H3 119.5 C18—C17—C16 125.0 (2)
C5—C4—C3 120.4 (2) C18—C17—H17 117.5
C5—C4—H4 119.8 C16—C17—H17 117.5
C3—C4—H4 119.8 C17—C18—C19 127.3 (2)
C4—C5—C6 120.5 (2) C17—C18—H18 116.4
C4—C5—H5 119.7 C19—C18—H18 116.4
C6—C5—H5 119.7 C20—C19—C24 117.6 (2)
C5—C6—C1 118.67 (18) C20—C19—C18 119.0 (2)
C5—C6—C7 123.60 (19) C24—C19—C18 123.4 (2)
C1—C6—C7 117.71 (18) C21—C20—C19 121.6 (2)
C8—C7—C6 118.19 (19) C21—C20—H20 119.2
C8—C7—C10 121.31 (18) C19—C20—H20 119.2
C6—C7—C10 120.49 (18) C20—C21—C22 119.2 (2)
C7—C8—C9 120.04 (18) C20—C21—H21 120.4
C7—C8—C16 119.47 (18) C22—C21—H21 120.4
C9—C8—C16 120.24 (18) C23—C22—C21 120.9 (2)
N1—C9—C8 122.44 (19) C23—C22—Br1 119.93 (19)
N1—C9—C26 115.76 (19) C21—C22—Br1 119.18 (19)
C8—C9—C26 121.80 (19) C22—C23—C24 119.4 (2)
C15—C10—C11 118.4 (2) C22—C23—H23 120.3
C15—C10—C7 120.84 (19) C24—C23—H23 120.3
C11—C10—C7 120.77 (19) C23—C24—C19 121.3 (2)
C12—C11—C10 120.1 (2) C23—C24—H24 119.3
C12—C11—H11 119.9 C19—C24—H24 119.3
C10—C11—H11 119.9 C9—C26—H26A 109.5
C13—C12—C11 120.8 (2) C9—C26—H26B 109.5
C13—C12—H12 119.6 H26A—C26—H26B 109.5
C11—C12—H12 119.6 C9—C26—H26C 109.5
C12—C13—C14 119.3 (2) H26A—C26—H26C 109.5
C12—C13—H13 120.3 H26B—C26—H26C 109.5
C14—C13—H13 120.3
C9—N1—C1—C2 −178.4 (2) C8—C7—C10—C11 114.2 (2)
C9—N1—C1—C6 0.4 (3) C6—C7—C10—C11 −67.0 (3)
N1—C1—C2—C3 178.0 (2) C15—C10—C11—C12 0.8 (3)
C6—C1—C2—C3 −0.7 (3) C7—C10—C11—C12 −179.1 (2)
C1—C2—C3—C4 0.1 (4) C10—C11—C12—C13 −0.2 (4)
C2—C3—C4—C5 0.5 (4) C11—C12—C13—C14 −0.2 (4)
C3—C4—C5—C6 −0.5 (4) C12—C13—C14—C15 −0.2 (4)
C4—C5—C6—C1 −0.2 (3) C13—C14—C15—C10 0.9 (4)
C4—C5—C6—C7 −178.5 (2) C11—C10—C15—C14 −1.2 (3)
N1—C1—C6—C5 −177.97 (19) C7—C10—C15—C14 178.7 (2)
C2—C1—C6—C5 0.8 (3) C7—C8—C16—O1 −66.9 (3)
N1—C1—C6—C7 0.5 (3) C9—C8—C16—O1 107.3 (2)
C2—C1—C6—C7 179.20 (19) C7—C8—C16—C17 112.9 (2)
C5—C6—C7—C8 177.32 (19) C9—C8—C16—C17 −72.8 (3)
C1—C6—C7—C8 −1.0 (3) O1—C16—C17—C18 173.7 (2)
C5—C6—C7—C10 −1.5 (3) C8—C16—C17—C18 −6.1 (4)
C1—C6—C7—C10 −179.90 (18) C16—C17—C18—C19 −179.4 (2)
C6—C7—C8—C9 0.8 (3) C17—C18—C19—C20 −175.6 (2)
C10—C7—C8—C9 179.66 (18) C17—C18—C19—C24 4.1 (4)
C6—C7—C8—C16 175.09 (18) C24—C19—C20—C21 −0.6 (4)
C10—C7—C8—C16 −6.1 (3) C18—C19—C20—C21 179.1 (2)
C1—N1—C9—C8 −0.6 (3) C19—C20—C21—C22 0.2 (4)
C1—N1—C9—C26 −179.99 (19) C20—C21—C22—C23 0.1 (4)
C7—C8—C9—N1 0.0 (3) C20—C21—C22—Br1 −178.94 (19)
C16—C8—C9—N1 −174.19 (19) C21—C22—C23—C24 0.0 (4)
C7—C8—C9—C26 179.3 (2) Br1—C22—C23—C24 179.02 (19)
C16—C8—C9—C26 5.1 (3) C22—C23—C24—C19 −0.4 (4)
C8—C7—C10—C15 −65.7 (3) C20—C19—C24—C23 0.7 (4)
C6—C7—C10—C15 113.1 (2) C18—C19—C24—C23 −179.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2673).

References

  1. Bruker (1998). SADABS Bruker AXS Inc., Maddison, Wisconsin, USA.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1998). J. Med. Chem 31, 1031–1035. [DOI] [PubMed]
  4. Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem 44, 2374–2377. [DOI] [PubMed]
  5. Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem 6, 1125–1149. [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404. [DOI] [PubMed]
  8. Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem 37, 2129–2137. [DOI] [PubMed]
  9. Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem 13, 324–326. [DOI] [PubMed]
  10. Michael, J. P. (1997). Nat. Prod. Rep 14, 605–608.
  11. Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  12. Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem 35, 1021–1026. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Westrip, S. P. (2010). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013784/hg2673sup1.cif

e-66-o1110-sup1.cif (20.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013784/hg2673Isup2.hkl

e-66-o1110-Isup2.hkl (166.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES