Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Sep;86(17):6758–6762. doi: 10.1073/pnas.86.17.6758

Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain.

R Gopalakrishna 1, W B Anderson 1
PMCID: PMC297925  PMID: 2505261

Abstract

The susceptibility of purified protein kinase C to oxidative inactivation by H2O2 was found to be increased by Ca2+ either alone at a high (5 mM) concentration or at a low (approximately 50 microM) concentration along with phosphatidylserine and diacylglycerol and by tumor-promoting phorbol esters even in the absence of Ca2+. This suggested that the membrane-bound and/or catalytically active form of protein kinase C is relatively more susceptible to oxidative inactivation. Although both the regulatory and catalytic domains of protein kinase C were susceptible to oxidative inactivation, a selective modification of the regulatory domain was obtained under mild oxidative conditions by protecting the catalytic site with ATP/Mg2+. Under these conditions there was a loss of both phorbol ester binding and Ca2+/phospholipid-stimulated kinase activity. However, this modified form of enzyme exhibited an increase in Ca2+/phospholipid-independent kinase activity. This suggests that selective oxidative modification of the regulatory domain may negate the requirement for Ca2+ and lipids for activation. Treatment of intact C6 glioma or B16 melanoma cells with H2O2 resulted in a time- and temperature-dependent decrease in Ca2+/phospholipid-dependent protein kinase C activity along with a concomitant transient increase in an oxidatively modified isoform of protein kinase C that exhibited activity in the absence of Ca2+ and phospholipids. Since protein kinase C can initially be activated by mild oxidative modification and subsequently inactivated by further oxidation, this dual activation-inactivation of protein kinase C in response to H2O2 suggests an effective on/off signal mechanism to influence cellular events.

Full text

PDF
6758

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballester R., Rosen O. M. Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J Biol Chem. 1985 Dec 5;260(28):15194–15199. [PubMed] [Google Scholar]
  2. Blackshear P. J., Nairn A. C., Kuo J. F. Protein kinases 1988: a current perspective. FASEB J. 1988 Nov;2(14):2957–2969. doi: 10.1096/fasebj.2.14.2972578. [DOI] [PubMed] [Google Scholar]
  3. Chan T. M., Chen E., Tatoyan A., Shargill N. S., Pleta M., Hochstein P. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem Biophys Res Commun. 1986 Sep 14;139(2):439–445. doi: 10.1016/s0006-291x(86)80010-9. [DOI] [PubMed] [Google Scholar]
  4. Czech M. P., Lawrence J. C., Jr, Lynn W. S. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4173–4177. doi: 10.1073/pnas.71.10.4173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldstein B. D., Witz G., Amoruso M., Stone D. S., Troll W. Stimulation of human polymorphonuclear leukocyte superoxide anion radical production by tumor promoters. Cancer Lett. 1981 Jan;11(3):257–262. doi: 10.1016/0304-3835(81)90117-8. [DOI] [PubMed] [Google Scholar]
  6. Gopalakrishna R., Anderson W. B. Susceptibility of protein kinase C to oxidative inactivation: loss of both phosphotransferase activity and phorbol diester binding. FEBS Lett. 1987 Dec 10;225(1-2):233–237. doi: 10.1016/0014-5793(87)81164-x. [DOI] [PubMed] [Google Scholar]
  7. Gopalakrishna R., Anderson W. B. The effects of chemical modification of calmodulin on Ca2+-induced exposure of a hydrophobic region. Separation of active and inactive forms of calmodulin. Biochim Biophys Acta. 1985 Feb 21;844(2):265–269. doi: 10.1016/0167-4889(85)90099-0. [DOI] [PubMed] [Google Scholar]
  8. Gopalakrishna R., Barsky S. H., Thomas T. P., Anderson W. B. Factors influencing chelator-stable, detergent-extractable, phorbol diester-induced membrane association of protein kinase C. Differences between Ca2+-induced and phorbol ester-stabilized membrane bindings of protein kinase C. J Biol Chem. 1986 Dec 15;261(35):16438–16445. [PubMed] [Google Scholar]
  9. Gopalakrishna R., Barsky S. H. Tumor promoter-induced membrane-bound protein kinase C regulates hematogenous metastasis. Proc Natl Acad Sci U S A. 1988 Jan;85(2):612–616. doi: 10.1073/pnas.85.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gopalakrishna R., Head J. F. Rapid purification of calcium-activated protease by calcium-dependent hydrophobic-interaction chromatography. FEBS Lett. 1985 Jul 8;186(2):246–250. doi: 10.1016/0014-5793(85)80717-1. [DOI] [PubMed] [Google Scholar]
  11. Hayes G. R., Lockwood D. H. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8115–8119. doi: 10.1073/pnas.84.22.8115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang F. L., Yoshida Y., Nakabayashi H., Huang K. P. Differential distribution of protein kinase C isozymes in the various regions of brain. J Biol Chem. 1987 Nov 15;262(32):15714–15720. [PubMed] [Google Scholar]
  13. Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem. 1977 Nov 10;252(21):7610–7616. [PubMed] [Google Scholar]
  14. Koshio O., Akanuma Y., Kasuga M. Hydrogen peroxide stimulates tyrosine phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. Biochem J. 1988 Feb 15;250(1):95–101. doi: 10.1042/bj2500095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levine R. L., Oliver C. N., Fulks R. M., Stadtman E. R. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2120–2124. doi: 10.1073/pnas.78.4.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  17. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  19. Oberley L. W., Oberley T. D., Buettner G. R. Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses. 1981 Jan;7(1):21–42. doi: 10.1016/0306-9877(81)90018-9. [DOI] [PubMed] [Google Scholar]
  20. Pontremoli S., Melloni E., Sparatore B., Salamino F., Michetti M., Sacco O., Horecker B. L. Binding to erythrocyte membrane is the physiological mechanism for activation of Ca2+-dependent neutral proteinase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):331–338. doi: 10.1016/0006-291x(85)91683-3. [DOI] [PubMed] [Google Scholar]
  21. Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem J. 1988 Jan 1;249(1):185–190. doi: 10.1042/bj2490185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharkey N. A., Leach K. L., Blumberg P. M. Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc Natl Acad Sci U S A. 1984 Jan;81(2):607–610. doi: 10.1073/pnas.81.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shearman M. S., Naor Z., Kikkawa U., Nishizuka Y. Differential expression of multiple protein kinase C subspecies in rat central nervous tissue. Biochem Biophys Res Commun. 1987 Sep 30;147(3):911–919. doi: 10.1016/s0006-291x(87)80157-2. [DOI] [PubMed] [Google Scholar]
  24. Solanki V., Rana R. S., Slaga T. J. Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promoters. Carcinogenesis. 1981;2(11):1141–1146. doi: 10.1093/carcin/2.11.1141. [DOI] [PubMed] [Google Scholar]
  25. Tapley P. M., Murray A. W. Modulation of Ca2+-activated, phospholipid-dependent protein kinase in platelets treated with a tumor-promoting phorbol ester. Biochem Biophys Res Commun. 1984 Jul 18;122(1):158–164. doi: 10.1016/0006-291x(84)90453-4. [DOI] [PubMed] [Google Scholar]
  26. White A. A., Crawford K. M., Patt C. S., Lad P. J. Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J Biol Chem. 1976 Dec 10;251(23):7304–7312. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES