Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 30;66(Pt 5):o1238. doi: 10.1107/S1600536810014303

(E)-3-Propoxymethyl­idene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

Burkhon Zh Elmuradov a,*, Kambarali Turgunov a, Bakhodir Tashkhodjaev a, Khusniddin M Shakhidoyatov a
PMCID: PMC2979261  PMID: 21579258

Abstract

The title compound, C15H16N2O2·H2O, was synthesized via the alkyl­ation of 3-hydroxy­methyl­idene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic mol­ecule and the water mol­ecule both lie on a crystallographic mirror plane. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the components into extended chains along [100].

Related literature

For the synthesis of the title compound and its derivatives, see: Späth & Platzer, (1935); Shakhidoyatov et al. (1976); Oripov et al. (1979); Elmuradov et al. (2006); Elmuradov & Shakhidoyatov (2004); Jahng et al. (2008). For the physiological activity of the title compound and its derivatives, see: Amin & Mehta (1959); Chatterjee & Ganguly (1968); Yakhontov et al. (1977); Yunusov et al. (1978); Johne (1981); Shakhidoyatov (1988). For standard bond distances, see: Allen et al. (1987).graphic file with name e-66-o1238-scheme1.jpg

Experimental

Crystal data

  • C15H16N2O2·H2O

  • M r = 274.31

  • Monoclinic, Inline graphic

  • a = 9.247 (2) Å

  • b = 6.876 (1) Å

  • c = 10.950 (2) Å

  • β = 97.90 (3)°

  • V = 689.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.75 × 0.53 × 0.20 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer

  • 1483 measured reflections

  • 1479 independent reflections

  • 1000 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.144

  • S = 1.15

  • 1479 reflections

  • 128 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014303/lh5028sup1.cif

e-66-o1238-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014303/lh5028Isup2.hkl

e-66-o1238-Isup2.hkl (74.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯N1 0.85 (7) 2.14 (8) 2.968 (5) 165 (7)
O1w—H2⋯O2i 0.90 (7) 1.95 (7) 2.855 (5) 176 (6)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T047).

supplementary crystallographic information

Comment

Tricyclic quinazoline alkaloids are a large group of heterocyclic compounds (Späth & Platzer, 1935; Shakhidoyatov et al., 1976; Oripov et al., 1979; Elmuradov & Shakhidoyatov, 2006; Jahng et al., 2008). These compounds and their derivatives possess different pharmacological activities (Amin & Mehta1959; Chatterjee & Ganguly, 1968; Yakhontov et al., 1977; Yunusov et al., 1978; Johne, 1981; Shakhidoyatov, 1988).

Alkylation of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with C1—C3 alkyl halides leads to the formation of new C-alkyl (Elmuradov & Shakhidoyatov, 2004) or O-alkyl derivatives (Elmuradov et al., 2006). Using the typical synthesis for O-alkyl derivatives the reaction of 3- hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide was carried out by boiling of the initial reagents (1:2 ratio) over 7 hours in ethanol in the presence of sodium hydroxide (Elmuradov et al., 2006) (Figure 1). The compound (3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin- 9-one) is obtained by formylation of 2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (alkaloid Deoxyvasicinone, isolated from Peganum Harmala) (Chatterjee & Ganguly, 1968) with Vilsmeier-Haack reagent.

The asymmetric unit contains half molecule of 3-propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9- one and a half water molecule (Figure 2). Both molecules of the asymetric unit lay on the crystallographic mirror plane. The water molecule links the N and Oi atoms of title compound molecule by O—H···N and O—H···Oi hydrogen bonds, which form a H-bond chain along [100] (Figure 3). The bond distances (Allen et al., 1987) and angles in molecule are in normal ranges.

Experimental

Sodium hydroxide (0.08 g, 2 mmol) was dissolved in ethanol (10 ml), and 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one (0.214 g, 1 mmol) and propyl iodide (0.34 g, 0.18 ml, d=1.747 g/ml, 2 mmol) were added. The mixture was heated to reflux on a water bath for 7 hours. The solvent was distilled off and the residue was re-crystallized from hexane. The title compound was obtained in 70 % yield (0.18 g). Colorless crystals suitable for X-ray analysis were obtained from hexane by slow evaporation.

Refinement

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93 Å (aromatic) and 0.97 Å (CH2) and 0.96 Å (CH3) and were refined with Uiso(H) =1.2Ueq(C)]. The H atoms of the water molecule involved in the intramolecular hydrogen bonds were located by difference Fourier synthesis and refined freely [O—H = 0.84 (7) and 0.90 (7) Å].

Figures

Fig. 1.

Fig. 1.

The reaction scheme.

Fig. 2.

Fig. 2.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of hydrogen-bonded (dashed lines) chains along [100].

Crystal data

C15H16N2O2·H2O F(000) = 292
Mr = 274.31 Dx = 1.321 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 15 reflections
a = 9.247 (2) Å θ = 5–10°
b = 6.876 (1) Å µ = 0.09 mm1
c = 10.950 (2) Å T = 293 K
β = 97.90 (3)° Prism, colourless
V = 689.6 (2) Å3 0.75 × 0.53 × 0.20 mm
Z = 2

Data collection

Stoe Stadi-4 four-circle diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 26.0°, θmin = 1.9°
graphite h = −11→11
Scan width (ω) = 1.56–1.68, scan ratio 2θ:ω = 1.00 I(Net) and σ(I) calculated according to Blessing (1987)[Blessing, R. H. (1987). Cryst. Rev.1, 3–58] k = 0→8
1483 measured reflections l = 0→13
1479 independent reflections 3 standard reflections every 60 min
1000 reflections with I > 2σ(I) intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.034P)2 + 0.5511P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
1479 reflections Δρmax = 0.21 e Å3
128 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.009 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.7289 (3) 0.2500 0.2635 (2) 0.0522 (8)
O2 0.1375 (3) 0.2500 0.5696 (3) 0.0682 (10)
N1 0.5853 (3) 0.2500 0.6240 (3) 0.0390 (8)
C2 0.5055 (4) 0.2500 0.5163 (3) 0.0349 (9)
N3 0.3551 (3) 0.2500 0.4988 (3) 0.0370 (8)
C4 0.2711 (4) 0.2500 0.5924 (3) 0.0430 (10)
C4A 0.3567 (4) 0.2500 0.7153 (3) 0.0384 (9)
C5 0.2880 (4) 0.2500 0.8207 (4) 0.0493 (11)
H5A 0.1865 0.2500 0.8133 0.059*
C6 0.3684 (4) 0.2500 0.9343 (4) 0.0546 (12)
H6A 0.3215 0.2500 1.0043 0.066*
C7 0.5192 (5) 0.2500 0.9468 (4) 0.0531 (11)
H7A 0.5731 0.2500 1.0251 0.064*
C8 0.5901 (4) 0.2500 0.8445 (3) 0.0448 (10)
H8A 0.6916 0.2500 0.8539 0.054*
C8A 0.5102 (4) 0.2500 0.7258 (3) 0.0355 (9)
C9 0.5544 (4) 0.2500 0.3964 (3) 0.0384 (9)
C10 0.4244 (4) 0.2500 0.2975 (3) 0.0452 (10)
H10A 0.4243 0.1352 0.2460 0.054* 0.50
H10B 0.4243 0.3648 0.2460 0.054* 0.50
C11 0.2918 (4) 0.2500 0.3684 (3) 0.0472 (10)
H11A 0.2322 0.3648 0.3486 0.057* 0.50
H11B 0.2322 0.1352 0.3486 0.057* 0.50
C12 0.6934 (4) 0.2500 0.3777 (3) 0.0447 (10)
H12A 0.7667 0.2500 0.4449 0.054*
C13 0.8823 (4) 0.2500 0.2525 (4) 0.0586 (13)
H13A 0.9291 0.1354 0.2916 0.070* 0.50
H13B 0.9291 0.3646 0.2916 0.070* 0.50
C14 0.8937 (5) 0.2500 0.1161 (4) 0.0673 (14)
H14A 0.8438 0.1361 0.0788 0.081* 0.50
H14B 0.8438 0.3639 0.0788 0.081* 0.50
C15 1.0456 (5) 0.2500 0.0877 (5) 0.096 (2)
H15A 1.0448 0.2500 −0.0001 0.144*
H15B 1.0953 0.1360 0.1224 0.144* 0.50
H15C 1.0953 0.3640 0.1224 0.144* 0.50
O1W 0.9030 (4) 0.2500 0.7141 (4) 0.1047 (17)
H2 0.975 (8) 0.2500 0.665 (6) 0.15 (3)*
H1 0.816 (8) 0.2500 0.676 (7) 0.17 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0461 (16) 0.078 (2) 0.0357 (15) 0.000 0.0161 (12) 0.000
O2 0.0307 (15) 0.126 (3) 0.0479 (17) 0.000 0.0058 (12) 0.000
N1 0.0308 (16) 0.050 (2) 0.0367 (17) 0.000 0.0074 (13) 0.000
C2 0.0345 (18) 0.036 (2) 0.035 (2) 0.000 0.0094 (15) 0.000
N3 0.0347 (16) 0.045 (2) 0.0310 (16) 0.000 0.0030 (13) 0.000
C4 0.039 (2) 0.055 (3) 0.037 (2) 0.000 0.0115 (16) 0.000
C4A 0.0354 (19) 0.045 (2) 0.0363 (19) 0.000 0.0099 (15) 0.000
C5 0.037 (2) 0.070 (3) 0.043 (2) 0.000 0.0093 (17) 0.000
C6 0.049 (2) 0.082 (3) 0.037 (2) 0.000 0.0172 (18) 0.000
C7 0.055 (3) 0.070 (3) 0.034 (2) 0.000 0.0061 (18) 0.000
C8 0.038 (2) 0.061 (3) 0.036 (2) 0.000 0.0033 (16) 0.000
C8A 0.0328 (19) 0.039 (2) 0.036 (2) 0.000 0.0093 (15) 0.000
C9 0.043 (2) 0.041 (2) 0.0321 (19) 0.000 0.0089 (16) 0.000
C10 0.055 (2) 0.048 (3) 0.032 (2) 0.000 0.0055 (17) 0.000
C11 0.043 (2) 0.065 (3) 0.033 (2) 0.000 0.0015 (16) 0.000
C12 0.048 (2) 0.055 (3) 0.031 (2) 0.000 0.0086 (17) 0.000
C13 0.044 (2) 0.087 (4) 0.049 (2) 0.000 0.0206 (19) 0.000
C14 0.054 (3) 0.104 (4) 0.049 (3) 0.000 0.022 (2) 0.000
C15 0.063 (3) 0.164 (7) 0.063 (3) 0.000 0.020 (3) 0.000
O1W 0.046 (2) 0.204 (5) 0.065 (2) 0.000 0.0116 (19) 0.000

Geometric parameters (Å, °)

O1—C12 1.336 (4) C9—C12 1.329 (5)
O1—C13 1.439 (4) C9—C10 1.502 (5)
O2—C4 1.226 (4) C10—C11 1.539 (5)
N1—C2 1.302 (4) C10—H10A 0.9700
N1—C8A 1.391 (4) C10—H10B 0.9700
C2—N3 1.377 (4) C11—H11A 0.9700
C2—C9 1.447 (5) C11—H11B 0.9700
N3—C4 1.369 (4) C12—H12A 0.9300
N3—C11 1.467 (4) C13—C14 1.512 (5)
C4—C4A 1.464 (5) C13—H13A 0.9700
C4A—C5 1.392 (5) C13—H13B 0.9700
C4A—C8A 1.408 (5) C14—C15 1.479 (6)
C5—C6 1.359 (5) C14—H14A 0.9700
C5—H5A 0.9300 C14—H14B 0.9700
C6—C7 1.383 (5) C15—H15A 0.9600
C6—H6A 0.9300 C15—H15B 0.9600
C7—C8 1.374 (5) C15—H15C 0.9600
C7—H7A 0.9300 O1W—H2 0.91 (7)
C8—C8A 1.404 (5) O1W—H1 0.85 (8)
C8—H8A 0.9300
C12—O1—C13 116.8 (3) C9—C10—H10A 110.8
C2—N1—C8A 116.3 (3) C11—C10—H10A 110.8
N1—C2—N3 124.2 (3) C9—C10—H10B 110.8
N1—C2—C9 127.8 (3) C11—C10—H10B 110.8
N3—C2—C9 108.0 (3) H10A—C10—H10B 108.9
C4—N3—C2 124.2 (3) N3—C11—C10 104.6 (3)
C4—N3—C11 122.5 (3) N3—C11—H11A 110.8
C2—N3—C11 113.3 (3) C10—C11—H11A 110.8
O2—C4—N3 120.4 (4) N3—C11—H11B 110.8
O2—C4—C4A 126.2 (3) C10—C11—H11B 110.8
N3—C4—C4A 113.4 (3) H11A—C11—H11B 108.9
C5—C4A—C8A 120.2 (3) C9—C12—O1 120.8 (3)
C5—C4A—C4 120.7 (3) C9—C12—H12A 119.6
C8A—C4A—C4 119.1 (3) O1—C12—H12A 119.6
C6—C5—C4A 120.3 (4) O1—C13—C14 106.6 (3)
C6—C5—H5A 119.9 O1—C13—H13A 110.4
C4A—C5—H5A 119.9 C14—C13—H13A 110.4
C5—C6—C7 120.6 (4) O1—C13—H13B 110.4
C5—C6—H6A 119.7 C14—C13—H13B 110.4
C7—C6—H6A 119.7 H13A—C13—H13B 108.6
C8—C7—C6 120.5 (4) C15—C14—C13 113.9 (4)
C8—C7—H7A 119.8 C15—C14—H14A 108.8
C6—C7—H7A 119.8 C13—C14—H14A 108.8
C7—C8—C8A 120.4 (4) C15—C14—H14B 108.8
C7—C8—H8A 119.8 C13—C14—H14B 108.8
C8A—C8—H8A 119.8 H14A—C14—H14B 107.7
N1—C8A—C8 119.0 (3) C14—C15—H15A 109.5
N1—C8A—C4A 122.9 (3) C14—C15—H15B 109.5
C8—C8A—C4A 118.2 (3) H15A—C15—H15B 109.5
C12—C9—C2 124.7 (3) C14—C15—H15C 109.5
C12—C9—C10 125.7 (3) H15A—C15—H15C 109.5
C2—C9—C10 109.6 (3) H15B—C15—H15C 109.5
C9—C10—C11 104.5 (3) H2—O1W—H1 115 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H1···N1 0.85 (7) 2.13 (8) 2.968 (5) 165 (7)
O1w—H2···O2i 0.90 (7) 1.95 (7) 2.855 (5) 176 (6)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5028).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Amin, A. H. & Mehta, D. R. (1959). Nature (London), 183, 1317–1318.
  3. Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chatterjee, A. & Ganguly, M. G. (1968). Phytochemistry, 7, 307–311.
  5. Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2004). Chem. Nat. Compd.40, 496–498.
  6. Elmuradov, B. Zh. & Shakhidoyatov, Kh. M. (2006). The Chemical and Biological Activity of Synthetic and Natural Compounds: Nitrogen-Containing Heterocycles, edited by V. G. Kartsev, Vol. 2, p. 84. Moscow: International Charitable Scientific Partnership Foundation (ICSPF).
  7. Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull.56, 607–609. [DOI] [PubMed]
  8. Johne, S. (1981). Pharmazie, 36, 583–596. [PubMed]
  9. Oripov, E., Shakhidoyatov, Kh. M., Kadyrov, Ch. Sh. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd.15, 556–564.
  10. Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99–104. Tashkent: Fan.
  11. Shakhidoyatov, Kh. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadyrov, Ch. Sh. (1976). Chem. Heterocycl. Compd.12, 1286–1291.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Späth, E. & Platzer, N. (1935). Ber. Dtsch Chem. Ges. B, 68, 2221–2226.
  14. Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  15. Yakhontov, L. N., Liberman, S. S., Zhikhareva, G. P. & Kuz’mina, K. K. (1977). Pharm. Chem. J.11, 598–612.
  16. Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; ‘Anticholinesterase agent’, Byull. Izobret. p. 17

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014303/lh5028sup1.cif

e-66-o1238-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014303/lh5028Isup2.hkl

e-66-o1238-Isup2.hkl (74.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES