Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1103. doi: 10.1107/S160053681001367X

tert-Butyl 4-isopropyl-2-oxo-6-phenyl-3,4-dihydro-2H-pyran-3-carboxyl­ate

Wei Chen a, Miao Yu b,*, Si Li c, Ning Jiao c
PMCID: PMC2979271  PMID: 21579155

Abstract

In the title compound, C19H24O4, the six-membered lactone ring adopts an envelope conformation with the tert-butoxy­carbonyl and isopropyl substituents in axial positions, and the phenyl group in an equatorial position. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For the applications and synthesis of endocyclic enol lactones, see: Davies & Jin (2004); Evans et al. (2005); Krafft & Katzenellenbogen (1981); Li et al. (2007); Zeni et al. (2004); Zhao et al. (1997); Jimenez-Tenorio et al. (2001). For the synthesis, see: Li et al. (2009).graphic file with name e-66-o1103-scheme1.jpg

Experimental

Crystal data

  • C19H24O4

  • M r = 316.38

  • Triclinic, Inline graphic

  • a = 8.6163 (9) Å

  • b = 10.888 (1) Å

  • c = 11.261 (1) Å

  • α = 68.393 (2)°

  • β = 79.118 (2)°

  • γ = 67.998 (2)°

  • V = 909.09 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.48 × 0.46 × 0.42 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.760, T max = 1.000

  • 4986 measured reflections

  • 3510 independent reflections

  • 2759 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.158

  • S = 1.04

  • 3510 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001367X/lx2139sup1.cif

e-66-o1103-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001367X/lx2139Isup2.hkl

e-66-o1103-Isup2.hkl (172.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.44 3.407 (2) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the EPSRC for financial support.

supplementary crystallographic information

Comment

Endocyclic enol lactones are important structural elements of biologically active natural products (Zhao et al., 1997) and useful synthetic intermediates for organic synthesis (Evans et al., 2005, Davies et al., 2004). The cyclization of alkynoic acids under acidic conditions (Krafft et al., 1981) , employing transition-metal complexes as catalysts (Zeni et al., 2004, Valerga et al., 2001),and the carbonylation coupling of alkynes and 1,3-dicarbonyl compounds are main synthetic pathways for the preparation of Enol lactones (Li et al., 2007)

In the title compound as shown in Fig. 1, the six-membered lactone ring adopts an envelope conformation with the tert-butoxycarbonyl, isopropyl and phenyl groups attached to it. The tert-butoxycarbonyl and isopropyl groups occupy axial positions, and the phenyl group occupies equatorial position. The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds between the pyran H atom and the oxygen of the C═O unit in pyran ring, with a C2—H2···O1i (Table 1).

Experimental

The title compound was obtained as a by-product in the copper-catalyzed tandem conjugate addition–cyclization–hydrolysis–decarboxylation reactions of alkynes and 5-alkylidene-Meldrum's acids (Jiao et al., 2009) acids as follows: To a mixture of CuBr (20 mg, 0.1 mmol), 1-ethynylbenzene (102 mg, 1 mmol) in H2O : t-BuOH = 10 : 1 (3 ml) was added and 2,2-dimethyl-5-(2-methylpropylidene)-1,3-dioxane-4,6-dione (99 mg, 0.5 mmol) at room temperature. The resulting mixture was refluxed for 10 h monitored by TLC. After evaporation, the residue was carefully purified by flash chromatography on silica gel. The title compound was obtained as a by-product (25% yield), which was crystallized from n-hexane-ethyl acetate.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.98 Å for methyne and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methyne H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x, - y + 2, - z + 1.]

Crystal data

C19H24O4 Z = 2
Mr = 316.38 F(000) = 340
Triclinic, P1 Dx = 1.156 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6163 (9) Å Cell parameters from 2216 reflections
b = 10.888 (1) Å θ = 4.8–55.3°
c = 11.261 (1) Å µ = 0.08 mm1
α = 68.393 (2)° T = 293 K
β = 79.118 (2)° Prismatic, colorless
γ = 67.998 (2)° 0.48 × 0.46 × 0.42 mm
V = 909.09 (15) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3510 independent reflections
Radiation source: fine-focus sealed tube 2759 reflections with I > 2σ(I)
graphite Rint = 0.051
Detector resolution: 10.0 pixels mm-1 θmax = 26.0°, θmin = 2.0°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) k = −10→13
Tmin = 0.760, Tmax = 1.000 l = −13→12
4986 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.0377P] where P = (Fo2 + 2Fc2)/3
3510 reflections (Δ/σ)max < 0.001
213 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.04144 (14) 0.87317 (11) 0.66284 (11) 0.0535 (3)
O2 0.07228 (13) 0.64576 (11) 0.71597 (10) 0.0461 (3)
O3 0.48770 (16) 0.75686 (16) 0.51105 (14) 0.0721 (4)
O4 0.33639 (14) 0.77581 (13) 0.69310 (12) 0.0554 (3)
C1 0.06511 (19) 0.77682 (15) 0.63769 (14) 0.0408 (4)
C2 0.19583 (19) 0.78720 (16) 0.52821 (14) 0.0425 (4)
H2 0.1560 0.8805 0.4644 0.051*
C3 0.2282 (2) 0.67697 (16) 0.46303 (15) 0.0441 (4)
H3 0.3364 0.6694 0.4143 0.053*
C4 0.2483 (2) 0.53947 (16) 0.56580 (15) 0.0450 (4)
H4 0.3113 0.4581 0.5464 0.054*
C5 0.18081 (19) 0.52752 (15) 0.68321 (15) 0.0412 (4)
C6 0.3589 (2) 0.77079 (16) 0.57572 (16) 0.0470 (4)
C7 0.4744 (3) 0.7625 (3) 0.7630 (2) 0.0739 (6)
C8 0.5394 (3) 0.8833 (3) 0.6928 (3) 0.0982 (9)
H8A 0.5896 0.8764 0.6108 0.147*
H8B 0.6216 0.8799 0.7418 0.147*
H8C 0.4481 0.9703 0.6812 0.147*
C9 0.3851 (4) 0.7727 (4) 0.8901 (2) 0.1092 (10)
H9A 0.2958 0.8610 0.8764 0.164*
H9B 0.4630 0.7658 0.9448 0.164*
H9C 0.3398 0.6978 0.9296 0.164*
C10 0.6078 (4) 0.6211 (3) 0.7773 (4) 0.1282 (12)
H10A 0.5556 0.5509 0.8000 0.192*
H10B 0.6796 0.5992 0.8432 0.192*
H10C 0.6730 0.6233 0.6979 0.192*
C11 0.0973 (2) 0.7132 (2) 0.36787 (17) 0.0589 (5)
H11 0.1194 0.6283 0.3467 0.071*
C12 0.1187 (4) 0.8256 (3) 0.2436 (2) 0.0887 (8)
H12A 0.0410 0.8410 0.1845 0.133*
H12B 0.2312 0.7957 0.2076 0.133*
H12C 0.0976 0.9111 0.2601 0.133*
C13 −0.0809 (3) 0.7518 (3) 0.4235 (2) 0.0799 (6)
H13A −0.1104 0.8386 0.4398 0.120*
H13B −0.0909 0.6793 0.5021 0.120*
H13C −0.1549 0.7622 0.3639 0.120*
C14 0.1969 (2) 0.39882 (16) 0.79280 (14) 0.0423 (4)
C15 0.0804 (2) 0.39429 (19) 0.89627 (17) 0.0575 (5)
H15 −0.0092 0.4750 0.8975 0.069*
C16 0.0954 (3) 0.2717 (2) 0.99749 (19) 0.0686 (6)
H16 0.0167 0.2701 1.0665 0.082*
C17 0.2272 (3) 0.1519 (2) 0.99593 (19) 0.0678 (6)
H17 0.2381 0.0692 1.0643 0.081*
C18 0.3423 (3) 0.15430 (19) 0.89392 (19) 0.0637 (5)
H18 0.4300 0.0726 0.8925 0.076*
C19 0.3295 (2) 0.27597 (18) 0.79372 (17) 0.0531 (4)
H19 0.4099 0.2766 0.7258 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0522 (7) 0.0401 (7) 0.0579 (7) −0.0079 (5) 0.0052 (5) −0.0165 (5)
O2 0.0517 (6) 0.0357 (6) 0.0438 (6) −0.0129 (5) 0.0106 (5) −0.0134 (5)
O3 0.0540 (8) 0.0982 (11) 0.0823 (10) −0.0365 (7) 0.0214 (7) −0.0508 (9)
O4 0.0482 (7) 0.0722 (9) 0.0523 (7) −0.0250 (6) 0.0004 (5) −0.0241 (6)
C1 0.0431 (8) 0.0347 (8) 0.0416 (8) −0.0115 (7) −0.0013 (6) −0.0111 (6)
C2 0.0481 (9) 0.0342 (8) 0.0390 (8) −0.0142 (7) 0.0015 (7) −0.0068 (6)
C3 0.0499 (9) 0.0437 (9) 0.0368 (8) −0.0174 (7) 0.0050 (7) −0.0129 (7)
C4 0.0528 (9) 0.0372 (8) 0.0431 (9) −0.0126 (7) 0.0014 (7) −0.0156 (7)
C5 0.0432 (8) 0.0351 (8) 0.0437 (9) −0.0113 (6) 0.0007 (6) −0.0145 (7)
C6 0.0498 (9) 0.0401 (9) 0.0508 (10) −0.0178 (7) 0.0057 (7) −0.0159 (7)
C7 0.0590 (12) 0.1008 (17) 0.0697 (13) −0.0321 (12) −0.0105 (10) −0.0277 (12)
C8 0.0908 (18) 0.139 (2) 0.108 (2) −0.0700 (17) 0.0064 (15) −0.0615 (18)
C9 0.110 (2) 0.184 (3) 0.0641 (15) −0.076 (2) −0.0044 (14) −0.0459 (18)
C10 0.094 (2) 0.116 (3) 0.146 (3) 0.0030 (18) −0.057 (2) −0.026 (2)
C11 0.0786 (13) 0.0560 (11) 0.0459 (10) −0.0254 (9) −0.0091 (9) −0.0156 (8)
C12 0.133 (2) 0.0810 (16) 0.0502 (12) −0.0445 (15) −0.0187 (13) −0.0041 (11)
C13 0.0670 (13) 0.1032 (18) 0.0811 (15) −0.0288 (12) −0.0189 (11) −0.0356 (13)
C14 0.0498 (9) 0.0409 (9) 0.0378 (8) −0.0173 (7) −0.0034 (7) −0.0123 (7)
C15 0.0672 (11) 0.0478 (10) 0.0471 (10) −0.0165 (8) 0.0072 (8) −0.0120 (8)
C16 0.0870 (14) 0.0654 (13) 0.0459 (10) −0.0332 (11) 0.0097 (10) −0.0086 (9)
C17 0.0943 (15) 0.0496 (11) 0.0497 (11) −0.0275 (11) −0.0122 (10) 0.0020 (8)
C18 0.0752 (13) 0.0427 (10) 0.0580 (12) −0.0073 (9) −0.0148 (10) −0.0071 (8)
C19 0.0539 (10) 0.0487 (10) 0.0482 (10) −0.0123 (8) −0.0030 (8) −0.0112 (8)

Geometric parameters (Å, °)

O1—C1 1.1927 (18) C9—H9C 0.9600
O2—C1 1.3584 (18) C10—H10A 0.9600
O2—C5 1.4091 (17) C10—H10B 0.9600
O3—C6 1.198 (2) C10—H10C 0.9600
O4—C6 1.318 (2) C11—C13 1.508 (3)
O4—C7 1.482 (2) C11—C12 1.517 (3)
C1—C2 1.507 (2) C11—H11 0.9800
C2—C6 1.523 (2) C12—H12A 0.9600
C2—C3 1.542 (2) C12—H12B 0.9600
C2—H2 0.9800 C12—H12C 0.9600
C3—C4 1.489 (2) C13—H13A 0.9600
C3—C11 1.545 (2) C13—H13B 0.9600
C3—H3 0.9800 C13—H13C 0.9600
C4—C5 1.320 (2) C14—C15 1.386 (2)
C4—H4 0.9300 C14—C19 1.394 (2)
C5—C14 1.467 (2) C15—C16 1.380 (3)
C7—C10 1.510 (4) C15—H15 0.9300
C7—C8 1.512 (4) C16—C17 1.375 (3)
C7—C9 1.513 (3) C16—H16 0.9300
C8—H8A 0.9600 C17—C18 1.368 (3)
C8—H8B 0.9600 C17—H17 0.9300
C8—H8C 0.9600 C18—C19 1.370 (2)
C9—H9A 0.9600 C18—H18 0.9300
C9—H9B 0.9600 C19—H19 0.9300
C1—O2—C5 120.35 (11) H9B—C9—H9C 109.5
C6—O4—C7 122.54 (14) C7—C10—H10A 109.5
O1—C1—O2 117.45 (14) C7—C10—H10B 109.5
O1—C1—C2 125.81 (14) H10A—C10—H10B 109.5
O2—C1—C2 116.73 (12) C7—C10—H10C 109.5
C1—C2—C6 109.81 (13) H10A—C10—H10C 109.5
C1—C2—C3 112.32 (12) H10B—C10—H10C 109.5
C6—C2—C3 109.70 (13) C13—C11—C12 111.18 (19)
C1—C2—H2 108.3 C13—C11—C3 113.38 (15)
C6—C2—H2 108.3 C12—C11—C3 111.50 (16)
C3—C2—H2 108.3 C13—C11—H11 106.8
C4—C3—C2 107.53 (12) C12—C11—H11 106.8
C4—C3—C11 112.76 (13) C3—C11—H11 106.8
C2—C3—C11 115.19 (14) C11—C12—H12A 109.5
C4—C3—H3 107.0 C11—C12—H12B 109.5
C2—C3—H3 107.0 H12A—C12—H12B 109.5
C11—C3—H3 107.0 C11—C12—H12C 109.5
C5—C4—C3 123.13 (14) H12A—C12—H12C 109.5
C5—C4—H4 118.4 H12B—C12—H12C 109.5
C3—C4—H4 118.4 C11—C13—H13A 109.5
C4—C5—O2 121.22 (13) C11—C13—H13B 109.5
C4—C5—C14 127.91 (14) H13A—C13—H13B 109.5
O2—C5—C14 110.81 (12) C11—C13—H13C 109.5
O3—C6—O4 126.45 (17) H13A—C13—H13C 109.5
O3—C6—C2 122.48 (16) H13B—C13—H13C 109.5
O4—C6—C2 111.06 (13) C15—C14—C19 118.15 (15)
O4—C7—C10 108.8 (2) C15—C14—C5 121.59 (15)
O4—C7—C8 109.19 (19) C19—C14—C5 120.24 (14)
C10—C7—C8 113.0 (2) C16—C15—C14 120.91 (17)
O4—C7—C9 101.57 (16) C16—C15—H15 119.5
C10—C7—C9 111.9 (2) C14—C15—H15 119.5
C8—C7—C9 111.7 (2) C17—C16—C15 119.78 (19)
C7—C8—H8A 109.5 C17—C16—H16 120.1
C7—C8—H8B 109.5 C15—C16—H16 120.1
H8A—C8—H8B 109.5 C18—C17—C16 120.00 (17)
C7—C8—H8C 109.5 C18—C17—H17 120.0
H8A—C8—H8C 109.5 C16—C17—H17 120.0
H8B—C8—H8C 109.5 C17—C18—C19 120.62 (18)
C7—C9—H9A 109.5 C17—C18—H18 119.7
C7—C9—H9B 109.5 C19—C18—H18 119.7
H9A—C9—H9B 109.5 C18—C19—C14 120.52 (17)
C7—C9—H9C 109.5 C18—C19—H19 119.7
H9A—C9—H9C 109.5 C14—C19—H19 119.7
C5—O2—C1—O1 172.04 (14) C3—C2—C6—O4 −134.60 (13)
C5—O2—C1—C2 −9.4 (2) C6—O4—C7—C10 −61.0 (3)
O1—C1—C2—C6 97.55 (18) C6—O4—C7—C8 62.8 (2)
O2—C1—C2—C6 −80.92 (16) C6—O4—C7—C9 −179.16 (19)
O1—C1—C2—C3 −140.10 (16) C4—C3—C11—C13 72.2 (2)
O2—C1—C2—C3 41.43 (19) C2—C3—C11—C13 −51.7 (2)
C1—C2—C3—C4 −47.02 (17) C4—C3—C11—C12 −161.41 (17)
C6—C2—C3—C4 75.39 (15) C2—C3—C11—C12 74.6 (2)
C1—C2—C3—C11 79.62 (17) C4—C5—C14—C15 −158.33 (18)
C6—C2—C3—C11 −157.96 (13) O2—C5—C14—C15 18.9 (2)
C2—C3—C4—C5 25.9 (2) C4—C5—C14—C19 20.1 (3)
C11—C3—C4—C5 −102.21 (19) O2—C5—C14—C19 −162.68 (14)
C3—C4—C5—O2 5.5 (2) C19—C14—C15—C16 0.2 (3)
C3—C4—C5—C14 −177.58 (15) C5—C14—C15—C16 178.69 (17)
C1—O2—C5—C4 −15.6 (2) C14—C15—C16—C17 −0.3 (3)
C1—O2—C5—C14 166.99 (13) C15—C16—C17—C18 −0.4 (3)
C7—O4—C6—O3 −0.8 (3) C16—C17—C18—C19 1.2 (3)
C7—O4—C6—C2 179.96 (15) C17—C18—C19—C14 −1.3 (3)
C1—C2—C6—O3 170.02 (16) C15—C14—C19—C18 0.6 (3)
C3—C2—C6—O3 46.1 (2) C5—C14—C19—C18 −177.89 (16)
C1—C2—C6—O4 −10.70 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.98 2.44 3.407 (2) 170

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2139).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davies, H. M. L. & Jin, Q. H. (2004). Proc. Natl. Acad. Sci.101, 5472–5475. [DOI] [PMC free article] [PubMed]
  4. Evans, D. A., Thomson, R. J. & Franco, F. (2005). J. Am. Chem. Soc.127, 10816–10817. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Jimenez-Tenorio, M., Puerta, M. C., Valerga, P., Moreno-Dorado, F. J., Guerra, F. M. & Massanet, G. M. (2001). Chem. Commun. pp. 2324–2325. [DOI] [PubMed]
  7. Krafft, G. A. & Katzenellenbogen, J. A. (1981). J. Am. Chem. Soc.103, 5459–5466.
  8. Li, S., Jia, W. & Jiao, N. (2009). Adv. Synth. Catal.351, 569–575.
  9. Li, Y., Yu, Z. & Alper, H. (2007). Org. Lett.9, 1647–1649. [DOI] [PubMed]
  10. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Zeni, G. & Larock, R. C. (2004). Chem. Rev.104, 2285–2309. [DOI] [PubMed]
  13. Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne, G. W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem.40, 242–249. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001367X/lx2139sup1.cif

e-66-o1103-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001367X/lx2139Isup2.hkl

e-66-o1103-Isup2.hkl (172.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES