Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):m512. doi: 10.1107/S1600536810012572

(4,4′-Dimethyl-2,2′-bipyridine-κ2 N,N′)(dimethyl sulfoxide-κO)diiodidocadmium(II)

Khadijeh Kalateh a, Roya Ahmadi a, Vahid Amani a,*
PMCID: PMC2979279  PMID: 21579009

Abstract

In the title compound, [CdI2(C12H12N2)(C2H6OS)], the CdII cation is coordinated by two N atoms from a dimethyl­bipyridine ligand, one O atom from a dimethyl sulfoxide mol­ecule and two I anions in a distorted trigonal–bipyramidal geometry. Intra­molecular C—H⋯O hydrogen bonding and inter­molecular π–π stacking between parallel pyridine rings [centroid–centroid distance = 3.658 (3) Å] are present in the crystal structure.

Related literature

For metal complexes of 4,4′-dimethyl-2,2′-bipyridine, see: Ahmadi et al. (2008); Amani et al. (2009); Kalateh et al. (2008); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).graphic file with name e-66-0m512-scheme1.jpg

Experimental

Crystal data

  • [CdI2(C12H12N2)(C2H6OS)]

  • M r = 628.58

  • Monoclinic, Inline graphic

  • a = 8.729 (1) Å

  • b = 15.5247 (18) Å

  • c = 15.1354 (17) Å

  • β = 102.620 (9)°

  • V = 2001.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.28 mm−1

  • T = 298 K

  • 0.49 × 0.30 × 0.28 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.002, T max = 0.055

  • 15568 measured reflections

  • 5360 independent reflections

  • 4625 reflections with I > 2σ(I)

  • R int = 0.082

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.172

  • S = 1.16

  • 5360 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 2.10 e Å−3

  • Δρmin = −2.23 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012572/xu2734sup1.cif

e-66-0m512-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012572/xu2734Isup2.hkl

e-66-0m512-Isup2.hkl (262.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.366 (5)
Cd1—N2 2.326 (4)
Cd1—O1 2.313 (5)
Cd1—I1 2.7535 (6)
Cd1—I2 2.7674 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.93 2.47 3.063 (8) 122

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001) and iridium (Yoshikawa et al., 2003). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted square-pyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two I atoms. The Cd—I and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) 2-X,2-Y,2-Z and (ii) 1-X,2-Y,2-Z , where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.657 (3) and 3.775 (3) Å.

Experimental

For the preparation of the title compound a solution of 4,4'-dimethyl-2,2'-bipyridine (0.15 g, 0.80 mmol) in methanol (10 ml) was added to a solution of CdI2 (0.29 g, 0.80 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.36 g, 71.6%).

Refinement

All H atoms were positioned geometrically with C—H = 0.93 (aromatic) and 0.96 Å (methyl) and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(c).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Unit-cell packing diagram for (I).

Crystal data

[CdI2(C12H12N2)(C2H6OS)] F(000) = 1176
Mr = 628.58 Dx = 2.086 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 887 reflections
a = 8.729 (1) Å θ = 1.9–29.3°
b = 15.5247 (18) Å µ = 4.28 mm1
c = 15.1354 (17) Å T = 298 K
β = 102.620 (9)° Block, colorless
V = 2001.5 (4) Å3 0.49 × 0.30 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 5360 independent reflections
Radiation source: fine-focus sealed tube 4625 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −11→11
Tmin = 0.002, Tmax = 0.055 k = −21→20
15568 measured reflections l = −20→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0903P)2 + 1.8883P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max = 0.015
5360 reflections Δρmax = 2.10 e Å3
195 parameters Δρmin = −2.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0171 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9509 (8) 0.7934 (4) 0.8795 (4) 0.0575 (14)
H1 0.9529 0.7743 0.8216 0.069*
C2 1.0322 (8) 0.7476 (4) 0.9527 (5) 0.0596 (14)
H2 1.0897 0.6991 0.9439 0.071*
C3 1.0280 (8) 0.7741 (4) 1.0397 (4) 0.0584 (14)
C4 1.1139 (11) 0.7258 (6) 1.1206 (6) 0.082 (2)
H4C 1.1322 0.7630 1.1725 0.098*
H4B 1.2126 0.7060 1.1101 0.098*
H4A 1.0522 0.6773 1.1313 0.098*
C5 0.9435 (7) 0.8469 (4) 1.0476 (4) 0.0499 (12)
H5 0.9383 0.8666 1.1049 0.060*
C6 0.8651 (5) 0.8918 (3) 0.9714 (3) 0.0385 (9)
C7 0.7726 (5) 0.9709 (3) 0.9790 (3) 0.0385 (9)
C8 0.7692 (6) 1.0072 (4) 1.0620 (3) 0.0453 (10)
H8 0.8262 0.9825 1.1151 0.054*
C9 0.6794 (7) 1.0810 (4) 1.0656 (4) 0.0488 (11)
C10 0.6735 (10) 1.1201 (5) 1.1561 (4) 0.0679 (17)
H10A 0.7188 1.1767 1.1603 0.081*
H10B 0.7315 1.0846 1.2037 0.081*
H10C 0.5663 1.1239 1.1617 0.081*
C11 0.5989 (8) 1.1146 (4) 0.9857 (4) 0.0568 (13)
H11 0.5372 1.1635 0.9857 0.068*
C12 0.6086 (8) 1.0764 (4) 0.9054 (4) 0.0545 (13)
H12 0.5546 1.1013 0.8517 0.065*
C13 0.411 (3) 1.1614 (9) 0.6212 (9) 0.189 (11)
H13A 0.3652 1.1675 0.6730 0.227*
H13B 0.3365 1.1789 0.5677 0.227*
H13C 0.5029 1.1971 0.6287 0.227*
C14 0.2811 (10) 1.0103 (11) 0.5584 (6) 0.110 (4)
H14C 0.2942 0.9510 0.5437 0.132*
H14B 0.2383 1.0418 0.5040 0.132*
H14A 0.2108 1.0141 0.5989 0.132*
N1 0.8687 (5) 0.8647 (3) 0.8888 (3) 0.0471 (9)
N2 0.6925 (5) 1.0048 (3) 0.9006 (3) 0.0439 (9)
O1 0.4994 (6) 1.0216 (4) 0.7072 (3) 0.0664 (12)
Cd1 0.72703 (5) 0.94561 (3) 0.76515 (2) 0.04529 (16)
I1 0.93442 (5) 1.04931 (3) 0.70096 (3) 0.06676 (19)
I2 0.63195 (7) 0.80423 (3) 0.65550 (3) 0.0758 (2)
S1 0.46338 (19) 1.05399 (12) 0.61041 (10) 0.0574 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.068 (3) 0.057 (3) 0.046 (3) 0.009 (3) 0.008 (2) −0.013 (2)
C2 0.066 (3) 0.056 (3) 0.055 (3) 0.014 (3) 0.010 (3) −0.008 (3)
C3 0.062 (3) 0.055 (3) 0.056 (3) 0.010 (3) 0.007 (3) 0.003 (3)
C4 0.094 (5) 0.082 (5) 0.063 (4) 0.032 (4) 0.006 (4) 0.008 (4)
C5 0.055 (3) 0.054 (3) 0.038 (2) 0.008 (2) 0.005 (2) 0.000 (2)
C6 0.038 (2) 0.042 (2) 0.036 (2) −0.0003 (16) 0.0086 (16) 0.0007 (18)
C7 0.037 (2) 0.045 (2) 0.033 (2) −0.0025 (17) 0.0059 (16) −0.0002 (18)
C8 0.054 (3) 0.050 (3) 0.031 (2) 0.003 (2) 0.0069 (18) −0.0019 (19)
C9 0.055 (3) 0.048 (3) 0.045 (3) 0.002 (2) 0.013 (2) −0.003 (2)
C10 0.090 (5) 0.070 (4) 0.046 (3) 0.011 (4) 0.019 (3) −0.009 (3)
C11 0.068 (3) 0.051 (3) 0.050 (3) 0.013 (3) 0.010 (3) −0.004 (2)
C12 0.069 (3) 0.055 (3) 0.036 (2) 0.014 (3) 0.002 (2) 0.002 (2)
C13 0.38 (3) 0.084 (8) 0.079 (7) 0.051 (13) −0.012 (12) 0.009 (6)
C14 0.061 (4) 0.200 (13) 0.063 (5) −0.027 (6) 0.001 (4) −0.007 (7)
N1 0.050 (2) 0.053 (2) 0.038 (2) −0.0004 (18) 0.0086 (17) −0.0057 (18)
N2 0.048 (2) 0.048 (2) 0.0333 (18) 0.0019 (17) 0.0039 (16) −0.0008 (17)
O1 0.059 (2) 0.095 (4) 0.042 (2) 0.014 (2) 0.0060 (18) 0.010 (2)
Cd1 0.0492 (2) 0.0532 (3) 0.0323 (2) −0.00441 (14) 0.00650 (14) −0.00210 (14)
I1 0.0659 (3) 0.0866 (4) 0.0452 (2) −0.0248 (2) 0.00653 (18) 0.01257 (19)
I2 0.0940 (4) 0.0675 (3) 0.0581 (3) −0.0181 (2) −0.0001 (2) −0.0193 (2)
S1 0.0532 (7) 0.0810 (11) 0.0364 (6) 0.0013 (6) 0.0061 (5) −0.0011 (6)

Geometric parameters (Å, °)

C1—N1 1.342 (8) C10—H10B 0.9600
C1—C2 1.376 (9) C10—H10C 0.9600
C1—H1 0.9300 C11—C12 1.373 (8)
C2—C3 1.387 (9) C11—H11 0.9300
C2—H2 0.9300 C12—N2 1.342 (8)
C3—C5 1.368 (8) C12—H12 0.9300
C3—C4 1.491 (9) C13—S1 1.746 (13)
C4—H4C 0.9600 C13—H13A 0.9600
C4—H4B 0.9600 C13—H13B 0.9600
C4—H4A 0.9600 C13—H13C 0.9600
C5—C6 1.393 (7) C14—S1 1.751 (9)
C5—H5 0.9300 C14—H14C 0.9600
C6—N1 1.327 (6) C14—H14B 0.9600
C6—C7 1.487 (7) C14—H14A 0.9600
C7—N2 1.346 (6) Cd1—N1 2.366 (5)
C7—C8 1.384 (7) Cd1—N2 2.326 (4)
C8—C9 1.396 (8) O1—S1 1.515 (5)
C8—H8 0.9300 Cd1—O1 2.313 (5)
C9—C11 1.363 (9) Cd1—I1 2.7535 (6)
C9—C10 1.508 (8) Cd1—I2 2.7674 (6)
C10—H10A 0.9600
N1—C1—C2 122.4 (6) C9—C11—H11 120.0
N1—C1—H1 118.8 C12—C11—H11 120.0
C2—C1—H1 118.8 N2—C12—C11 123.1 (5)
C1—C2—C3 119.6 (6) N2—C12—H12 118.5
C1—C2—H2 120.2 C11—C12—H12 118.5
C3—C2—H2 120.2 S1—C13—H13A 109.5
C5—C3—C2 117.0 (6) S1—C13—H13B 109.5
C5—C3—C4 121.8 (6) H13A—C13—H13B 109.5
C2—C3—C4 121.1 (6) S1—C13—H13C 109.5
C3—C4—H4C 109.5 H13A—C13—H13C 109.5
C3—C4—H4B 109.5 H13B—C13—H13C 109.5
H4C—C4—H4B 109.5 S1—C14—H14C 109.5
C3—C4—H4A 109.5 S1—C14—H14B 109.5
H4C—C4—H4A 109.5 H14C—C14—H14B 109.5
H4B—C4—H4A 109.5 S1—C14—H14A 109.5
C3—C5—C6 121.2 (5) H14C—C14—H14A 109.5
C3—C5—H5 119.4 H14B—C14—H14A 109.5
C6—C5—H5 119.4 C6—N1—C1 118.9 (5)
N1—C6—C5 120.9 (5) C6—N1—Cd1 117.5 (4)
N1—C6—C7 117.4 (4) C1—N1—Cd1 123.6 (4)
C5—C6—C7 121.8 (4) C12—N2—C7 117.5 (5)
N2—C7—C8 122.1 (5) C12—N2—Cd1 123.5 (3)
N2—C7—C6 116.2 (4) C7—N2—Cd1 118.7 (3)
C8—C7—C6 121.7 (4) S1—O1—Cd1 121.0 (3)
C7—C8—C9 119.6 (5) O1—Cd1—N2 82.36 (16)
C7—C8—H8 120.2 O1—Cd1—N1 145.92 (16)
C9—C8—H8 120.2 N2—Cd1—N1 70.02 (16)
C11—C9—C8 117.7 (5) O1—Cd1—I1 98.31 (14)
C11—C9—C10 122.5 (6) N2—Cd1—I1 107.57 (12)
C8—C9—C10 119.8 (5) N1—Cd1—I1 108.61 (12)
C9—C10—H10A 109.5 O1—Cd1—I2 93.25 (14)
C9—C10—H10B 109.5 N2—Cd1—I2 139.68 (12)
H10A—C10—H10B 109.5 N1—Cd1—I2 95.15 (12)
C9—C10—H10C 109.5 I1—Cd1—I2 112.72 (2)
H10A—C10—H10C 109.5 O1—S1—C13 103.3 (5)
H10B—C10—H10C 109.5 O1—S1—C14 106.4 (5)
C9—C11—C12 120.0 (6) C13—S1—C14 100.5 (9)
N1—C1—C2—C3 1.3 (11) C8—C7—N2—C12 0.5 (8)
C1—C2—C3—C5 −1.2 (11) C6—C7—N2—C12 −179.7 (5)
C1—C2—C3—C4 179.6 (8) C8—C7—N2—Cd1 174.2 (4)
C2—C3—C5—C6 0.2 (10) C6—C7—N2—Cd1 −6.0 (6)
C4—C3—C5—C6 179.4 (7) S1—O1—Cd1—N2 152.1 (4)
C3—C5—C6—N1 0.8 (9) S1—O1—Cd1—N1 −172.4 (3)
C3—C5—C6—C7 179.9 (6) S1—O1—Cd1—I1 45.3 (4)
N1—C6—C7—N2 4.0 (7) S1—O1—Cd1—I2 −68.2 (4)
C5—C6—C7—N2 −175.1 (5) C12—N2—Cd1—O1 −22.7 (5)
N1—C6—C7—C8 −176.1 (5) C7—N2—Cd1—O1 164.0 (4)
C5—C6—C7—C8 4.8 (8) C12—N2—Cd1—N1 177.6 (5)
N2—C7—C8—C9 0.4 (8) C7—N2—Cd1—N1 4.3 (4)
C6—C7—C8—C9 −179.4 (5) C12—N2—Cd1—I1 73.7 (5)
C7—C8—C9—C11 −0.4 (9) C7—N2—Cd1—I1 −99.6 (4)
C7—C8—C9—C10 179.2 (6) C12—N2—Cd1—I2 −108.7 (5)
C8—C9—C11—C12 −0.5 (10) C7—N2—Cd1—I2 78.0 (4)
C10—C9—C11—C12 180.0 (7) C6—N1—Cd1—O1 −39.9 (6)
C9—C11—C12—N2 1.5 (11) C1—N1—Cd1—O1 139.8 (5)
C5—C6—N1—C1 −0.8 (8) C6—N1—Cd1—N2 −2.0 (4)
C7—C6—N1—C1 −179.9 (5) C1—N1—Cd1—N2 177.7 (5)
C5—C6—N1—Cd1 179.0 (4) C6—N1—Cd1—I1 100.5 (4)
C7—C6—N1—Cd1 −0.2 (6) C1—N1—Cd1—I1 −79.8 (5)
C2—C1—N1—C6 −0.3 (10) C6—N1—Cd1—I2 −143.5 (4)
C2—C1—N1—Cd1 −180.0 (5) C1—N1—Cd1—I2 36.2 (5)
C11—C12—N2—C7 −1.4 (10) Cd1—O1—S1—C13 −131.6 (9)
C11—C12—N2—Cd1 −174.8 (5) Cd1—O1—S1—C14 123.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···O1 0.93 2.47 3.063 (8) 122

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2734).

References

  1. Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. [DOI] [PMC free article] [PubMed]
  2. Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem.62, 1939–1950.
  3. Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des.8, 3114–3122.
  4. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. [DOI] [PMC free article] [PubMed]
  8. Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. [DOI] [PMC free article] [PubMed]
  9. Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.
  10. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.
  13. Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem.40, 4342–4352. [DOI] [PubMed]
  14. Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.
  15. Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012572/xu2734sup1.cif

e-66-0m512-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012572/xu2734Isup2.hkl

e-66-0m512-Isup2.hkl (262.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES