Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 17;66(Pt 5):o1104. doi: 10.1107/S1600536810013462

2-(2-Methoxy­phen­yl)butane­dinitrile

Xiang-Zi Li a,b, Zhi-Jun Feng b, Yan Yu b, Wei-Li Shen a, Yin Ye a,*
PMCID: PMC2979281  PMID: 21579156

Abstract

In the title compound, C11H10N2O, the butane­dinitrile unit adopts a synclinal conformation. The crystal packing is stabilized by weak inter­molecular C—H⋯N hydrogen bonding.

Related literature

The title compound is an important inter­mediate in drugs synthesis, see: Obniska et al. (2005). For the synthesis, see: Johnson et al. (1962).graphic file with name e-66-o1104-scheme1.jpg

Experimental

Crystal data

  • C11H10N2O

  • M r = 186.21

  • Monoclinic, Inline graphic

  • a = 12.393 (9) Å

  • b = 5.405 (4) Å

  • c = 15.216 (10) Å

  • β = 102.947 (8)°

  • V = 993.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.37 × 0.25 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.970, T max = 0.985

  • 7820 measured reflections

  • 2292 independent reflections

  • 1549 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.116

  • S = 1.04

  • 2292 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013462/xu2746sup1.cif

e-66-o1104-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013462/xu2746Isup2.hkl

e-66-o1104-Isup2.hkl (112.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.93 2.50 3.404 (3) 165
C8—H8⋯N2ii 0.98 2.50 3.262 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Higher Education Natural Science Foundation of Anhui Province (Nos. KJ2010B250, KJ2009B109, KJ2008B169) and the Higher Education Excellent Youth Talents Foundation of Anhui Province, China (No. 2010SQRL179).

supplementary crystallographic information

Comment

The title compound is an important intermediate in drugs synthesis (Obniska et al., 2005). In this paper, we report the structure of the title compound (I). In (I), the succinonitrite moiety adopts a cis conformation. Two cyanide groups, (N1—C10 and N2—C11), are not coplane. However, the methoxy group is almost coplanar with the the mean plane of the phenyl (C2/C3/C4/C5/C6/C7). The crystal packing is stabilized by two intermolecular non-classic C—H···N hydrogen bonds.

Experimental

The compound (I) was obtained by reaction of (Z)-ethyl-2-cyano-3-(2-methoxyphenyl)acrylate and NaCN in ethanol-water mixture according to the reported method (Johnson et al., 1962). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms were placed in calculated positions and refined using a riding model with C—H = 0.93-0.98 Å. Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) viewed down the b axis. Dotted lines show the hydrogen bonds.

Crystal data

C11H10N2O F(000) = 392
Mr = 186.21 Dx = 1.245 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2518 reflections
a = 12.393 (9) Å θ = 2.8–26.1°
b = 5.405 (4) Å µ = 0.08 mm1
c = 15.216 (10) Å T = 298 K
β = 102.947 (8)° Block, colorless
V = 993.3 (12) Å3 0.37 × 0.25 × 0.14 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2292 independent reflections
Radiation source: fine-focus sealed tube 1549 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 27.7°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −16→16
Tmin = 0.970, Tmax = 0.985 k = −6→6
7820 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1131P] where P = (Fo2 + 2Fc2)/3
2292 reflections (Δ/σ)max < 0.001
128 parameters Δρmax = 0.12 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.34900 (15) 1.2727 (3) 0.69677 (11) 0.0644 (5)
H1A 0.3731 1.1717 0.6529 0.097*
H1B 0.4106 1.3657 0.7303 0.097*
H1C 0.2924 1.3843 0.6667 0.097*
N1 0.45207 (12) 0.7505 (3) 1.07568 (10) 0.0728 (4)
O1 0.30584 (9) 1.11902 (19) 0.75662 (6) 0.0581 (3)
C2 0.22452 (11) 0.9545 (3) 0.72065 (9) 0.0461 (3)
N2 0.22425 (13) 1.2438 (2) 0.95010 (9) 0.0660 (4)
C3 0.17425 (13) 0.9391 (3) 0.63011 (10) 0.0585 (4)
H3 0.1945 1.0466 0.5889 0.070*
C4 0.09351 (14) 0.7621 (3) 0.60142 (11) 0.0642 (5)
H4 0.0591 0.7523 0.5406 0.077*
C5 0.06344 (13) 0.6016 (3) 0.66096 (11) 0.0605 (4)
H5 0.0102 0.4810 0.6406 0.073*
C6 0.11252 (11) 0.6197 (3) 0.75120 (10) 0.0500 (4)
H6 0.0913 0.5117 0.7919 0.060*
C7 0.19287 (11) 0.7958 (2) 0.78245 (8) 0.0409 (3)
C8 0.24600 (11) 0.8102 (2) 0.88203 (9) 0.0422 (3)
H8 0.2064 0.6939 0.9129 0.051*
C9 0.36818 (12) 0.7315 (3) 0.90375 (10) 0.0518 (4)
H9A 0.3741 0.5645 0.8819 0.062*
H9B 0.4096 0.8402 0.8727 0.062*
C10 0.41624 (12) 0.7404 (3) 1.00039 (11) 0.0547 (4)
C11 0.23445 (11) 1.0568 (3) 0.91933 (9) 0.0457 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0803 (11) 0.0570 (10) 0.0640 (10) −0.0141 (8) 0.0332 (9) 0.0021 (8)
N1 0.0724 (10) 0.0769 (10) 0.0604 (9) 0.0051 (7) −0.0034 (7) 0.0056 (7)
O1 0.0726 (7) 0.0561 (6) 0.0471 (6) −0.0181 (5) 0.0167 (5) 0.0032 (5)
C2 0.0515 (8) 0.0429 (8) 0.0447 (7) 0.0002 (6) 0.0129 (6) −0.0007 (6)
N2 0.0978 (11) 0.0466 (8) 0.0543 (8) 0.0086 (7) 0.0183 (7) −0.0036 (6)
C3 0.0678 (10) 0.0649 (10) 0.0435 (8) −0.0002 (8) 0.0138 (7) 0.0049 (7)
C4 0.0639 (10) 0.0787 (12) 0.0451 (8) 0.0010 (9) 0.0018 (7) −0.0066 (8)
C5 0.0527 (9) 0.0664 (10) 0.0593 (9) −0.0081 (7) 0.0057 (7) −0.0090 (8)
C6 0.0500 (8) 0.0463 (8) 0.0543 (9) −0.0010 (6) 0.0131 (6) 0.0000 (6)
C7 0.0450 (7) 0.0372 (7) 0.0413 (7) 0.0039 (5) 0.0112 (6) 0.0004 (5)
C8 0.0507 (8) 0.0357 (7) 0.0413 (7) 0.0008 (6) 0.0124 (6) 0.0033 (5)
C9 0.0544 (8) 0.0499 (9) 0.0495 (8) 0.0090 (6) 0.0081 (6) 0.0022 (6)
C10 0.0530 (8) 0.0493 (9) 0.0579 (9) 0.0065 (7) 0.0041 (7) 0.0054 (7)
C11 0.0555 (8) 0.0434 (8) 0.0382 (7) 0.0030 (6) 0.0102 (6) 0.0039 (6)

Geometric parameters (Å, °)

C1—O1 1.4225 (18) C4—H4 0.9300
C1—H1A 0.9600 C5—C6 1.375 (2)
C1—H1B 0.9600 C5—H5 0.9300
C1—H1C 0.9600 C6—C7 1.383 (2)
N1—C10 1.133 (2) C6—H6 0.9300
O1—C2 1.3632 (17) C7—C8 1.513 (2)
C2—C3 1.381 (2) C8—C11 1.468 (2)
C2—C7 1.3928 (19) C8—C9 1.536 (2)
N2—C11 1.1327 (18) C8—H8 0.9800
C3—C4 1.382 (2) C9—C10 1.458 (2)
C3—H3 0.9300 C9—H9A 0.9700
C4—C5 1.365 (2) C9—H9B 0.9700
O1—C1—H1A 109.5 C5—C6—H6 119.5
O1—C1—H1B 109.5 C7—C6—H6 119.5
H1A—C1—H1B 109.5 C6—C7—C2 118.83 (13)
O1—C1—H1C 109.5 C6—C7—C8 119.89 (12)
H1A—C1—H1C 109.5 C2—C7—C8 121.28 (12)
H1B—C1—H1C 109.5 C11—C8—C7 112.07 (10)
C2—O1—C1 118.29 (12) C11—C8—C9 110.19 (11)
O1—C2—C3 124.58 (13) C7—C8—C9 112.84 (11)
O1—C2—C7 115.18 (12) C11—C8—H8 107.1
C3—C2—C7 120.24 (13) C7—C8—H8 107.1
C2—C3—C4 119.32 (14) C9—C8—H8 107.1
C2—C3—H3 120.3 C10—C9—C8 111.60 (12)
C4—C3—H3 120.3 C10—C9—H9A 109.3
C5—C4—C3 121.07 (15) C8—C9—H9A 109.3
C5—C4—H4 119.5 C10—C9—H9B 109.3
C3—C4—H4 119.5 C8—C9—H9B 109.3
C4—C5—C6 119.48 (15) H9A—C9—H9B 108.0
C4—C5—H5 120.3 N1—C10—C9 178.67 (17)
C6—C5—H5 120.3 N2—C11—C8 177.91 (15)
C5—C6—C7 121.04 (14)
C1—O1—C2—C3 −5.4 (2) C3—C2—C7—C6 1.5 (2)
C1—O1—C2—C7 174.73 (13) O1—C2—C7—C8 0.32 (18)
O1—C2—C3—C4 179.19 (15) C3—C2—C7—C8 −179.53 (12)
C7—C2—C3—C4 −1.0 (2) C6—C7—C8—C11 −123.69 (14)
C2—C3—C4—C5 −0.5 (2) C2—C7—C8—C11 57.39 (17)
C3—C4—C5—C6 1.4 (3) C6—C7—C8—C9 111.21 (15)
C4—C5—C6—C7 −0.8 (2) C2—C7—C8—C9 −67.71 (16)
C5—C6—C7—C2 −0.6 (2) C11—C8—C9—C10 55.55 (15)
C5—C6—C7—C8 −179.58 (13) C7—C8—C9—C10 −178.33 (11)
O1—C2—C7—C6 −178.61 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···N2i 0.93 2.50 3.404 (3) 165
C8—H8···N2ii 0.98 2.50 3.262 (3) 135

Symmetry codes: (i) x, −y+5/2, z−1/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2746).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Johnson, F., Panella, J. P. & Carlson, A. A. (1962). J. Org. Chem.28, 2241–2243.
  3. Obniska, J., Jurczyk, S., Zejc, A., Kamiński, K., Tatarczyńska, E. & Stachowicz, K. (2005). Pharmacol. Rep.57, 170–175. [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013462/xu2746sup1.cif

e-66-o1104-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013462/xu2746Isup2.hkl

e-66-o1104-Isup2.hkl (112.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES