Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Apr 10;66(Pt 5):m495. doi: 10.1107/S1600536810011670

[μ-2,2′-Dimethyl-2,2′-(p-phenyl­ene)diprop­yl]bis­[chloridobis(2-methyl-2-phenyl­prop­yl)tin(IV)]

Chunliu Sun a, Chong Liang b, Wanli Kang c,*, Dongsheng Zhu d
PMCID: PMC2979286  PMID: 21578997

Abstract

The mol­ecular structure of the title compound, [Sn2(C10H13)4(C14H20)Cl2], is a binuclear centrosymmetric complex, in which the Sn atoms are four-coordinated by three C atoms and one Cl atom in a distorted tetra­hedral geometry.

Related literature

For general background to organotin compounds, see: Chandrasekhar et al. (2002); Wu et al. (2009); For related structures, see: Tarassoli et al. (2002).graphic file with name e-66-0m495-scheme1.jpg

Experimental

Crystal data

  • [Sn2(C10H13)4(C14H20)Cl2]

  • M r = 1029.40

  • Monoclinic, Inline graphic

  • a = 15.0769 (19) Å

  • b = 17.773 (2) Å

  • c = 18.914 (2) Å

  • β = 94.674 (2)°

  • V = 5051.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 185 K

  • 0.34 × 0.32 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.688, T max = 0.721

  • 14065 measured reflections

  • 4976 independent reflections

  • 3284 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.113

  • S = 1.02

  • 4976 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011670/pb2026sup1.cif

e-66-0m495-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011670/pb2026Isup2.hkl

e-66-0m495-Isup2.hkl (243.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the State Key Development Program for Basic Research of China (2005CB221304) for support.

supplementary crystallographic information

Comment

The increasing interest in organotin compounds that has arisen in the last few decades is attributed to their significantly important biological properties like antiviral and anticancer agents, in vitro antibacterial and antifungal agents, wood preservatives and pesticides, etc. (Chandrasekhar et al., 2002; & Wu et al., 2009). Therefore, synthesis of new organotin compounds with different structural features will be beneficial in the development of pharmaceutical organotin and in other properties and application. herein, we present the synthesis and crystal structure of the title compound (I).

The structure of the title compound (Fig.1) consists of two symmetry equivalent tin moieties, where the tin atoms are tetrahedrally coordinated by the three C atoms and one Cl atom. The bond lengths for Sn(1)—C(1), Sn(1)—C(8) and Sn(1)—C(18) are 2.146 (5), 2.152 (5) and 2.149 (5) Å, respectively, which are slightly shorter than the Bz3Sn(EtACDA) reported by Tarassoli et al. (Tarassoli et al., 2002). Around the tin, the angles C(1)—Sn(1)—C(8), C(1)—Sn(1)—C(18) and C(8)—Sn(1)—C(18) are wider while the C(1)—Sn(1)—Cl(1), C(8)—Sn(1)—Cl(1) and C(18)—Sn(1)—Cl(1) are narrower than the ideal tetrahedral angle. Thus, the environment of tin is best described as distorted tetrahedral.

Experimental

A small iodine grain, magnesium powder(0.24 g 10 mmol), and 1,4-bis(1- chloro-2-methylpropan-2-yl)benzene (0.52 g, 2 mmol) were added to 2 ml of anhydrous ether under stirring. The reaction mixture is then heated to 50 –60°C by hot-water bath and maintained slight boiling state. When the purplish red of iodine disappeared, which indicated the reaction were initiated, the hot-water bath was removed. The reaction were keeping the slight boiling state, then a solution of 1,4-bis(1-chloro-2-methylpropan- 2-yl)benzene (2.59 g, 10 mmol) in 10 ml anhydrous ether were added dropwise. After finished, the mixture was refluxed for 1 h to allow magnesium to proceed to completion, then cooled to 0–5°C by ice-salt bath. A solution of dichlorobis(2-methyl-2-phenylpropyl)stannane (4.56 g,10 mmol) in 15 mL THF were then added dropwise. After finished, the ice-salt bath was removed, and the reaction mixture were stirred for 0.5 h at room temprature then refluxed for another 1.5 h. Finally, the mixture were again cooled to 0°C, and acidified by dropwise adding a solution containing 2.5 g fuming HCl and 15 ml water. The layers were separated, the organic phase was dried over anhydrous calcium chloride. Following filtration and evaporation of the solvent, the residue was recrystallized by THF and the colorless block crystals of (I) were abtained.

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Scheme 1. The chemical structure diagram of (I). Scheme 2. The reaction scheme for synthesis of (I).

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

[Sn2(C10H13)4(C14H20)Cl2] F(000) = 2120
Mr = 1029.40 Dx = 1.354 Mg m3
Monoclinic, C2/c Melting point: not measured K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 15.0769 (19) Å Cell parameters from 4976 reflections
b = 17.773 (2) Å θ = 1.8–26.1°
c = 18.914 (2) Å µ = 1.13 mm1
β = 94.674 (2)° T = 185 K
V = 5051.4 (11) Å3 Block, colorless
Z = 4 0.34 × 0.32 × 0.29 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4976 independent reflections
Radiation source: fine-focus sealed tube 3284 reflections with I > 2σ(I)
graphite Rint = 0.073
phi and ω scans θmax = 26.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→18
Tmin = 0.688, Tmax = 0.721 k = −21→10
14065 measured reflections l = −22→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.039P)2] where P = (Fo2 + 2Fc2)/3
4976 reflections (Δ/σ)max = 0.001
262 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.28085 (2) 0.63191 (2) 0.82050 (2) 0.03363 (14)
Cl1 0.38105 (10) 0.72044 (11) 0.88005 (10) 0.0654 (6)
C1 0.1798 (3) 0.6193 (4) 0.8932 (3) 0.0452 (17)
H1A 0.1553 0.5691 0.8870 0.054*
H1B 0.2087 0.6218 0.9409 0.054*
C2 0.1012 (3) 0.6751 (3) 0.8892 (3) 0.0379 (15)
C3 0.1392 (4) 0.7525 (4) 0.9106 (3) 0.0584 (19)
H3A 0.0919 0.7887 0.9090 0.088*
H3B 0.1819 0.7672 0.8782 0.088*
H3C 0.1677 0.7500 0.9578 0.088*
C4 0.0385 (4) 0.6530 (4) 0.9459 (3) 0.0521 (19)
H4A −0.0105 0.6877 0.9445 0.078*
H4B 0.0703 0.6546 0.9919 0.078*
H4C 0.0163 0.6031 0.9366 0.078*
C5 0.0505 (3) 0.6738 (4) 0.8170 (3) 0.0362 (14)
C6 0.0253 (4) 0.6067 (4) 0.7834 (3) 0.0442 (16)
H6A 0.0417 0.5612 0.8050 0.053*
C7 0.0247 (4) 0.7404 (4) 0.7826 (3) 0.0476 (17)
H7A 0.0411 0.7861 0.8038 0.057*
C8 0.3641 (3) 0.5345 (3) 0.8122 (3) 0.0376 (15)
H8A 0.3510 0.5132 0.7653 0.045*
H8B 0.4254 0.5516 0.8150 0.045*
C9 0.3579 (3) 0.4711 (4) 0.8663 (3) 0.0394 (15)
C10 0.3954 (4) 0.4993 (4) 0.9392 (3) 0.062 (2)
H10A 0.3599 0.5405 0.9537 0.093*
H10B 0.4556 0.5159 0.9364 0.093*
H10C 0.3942 0.4593 0.9731 0.093*
C11 0.4168 (4) 0.4049 (4) 0.8449 (4) 0.060 (2)
H11A 0.4772 0.4217 0.8439 0.090*
H11B 0.3955 0.3869 0.7988 0.090*
H11C 0.4143 0.3649 0.8789 0.090*
C12 0.2626 (3) 0.4417 (3) 0.8674 (3) 0.0350 (14)
C13 0.2205 (4) 0.4316 (3) 0.9293 (3) 0.0434 (16)
H13A 0.2508 0.4431 0.9727 0.052*
C14 0.1342 (4) 0.4048 (3) 0.9273 (4) 0.0462 (16)
H14A 0.1073 0.3984 0.9694 0.055*
C15 0.0884 (4) 0.3878 (4) 0.8646 (4) 0.0567 (19)
H15A 0.0304 0.3698 0.8639 0.068*
C16 0.1283 (4) 0.3974 (4) 0.8018 (4) 0.0570 (19)
H16A 0.0974 0.3861 0.7585 0.068*
C17 0.2147 (4) 0.4239 (4) 0.8044 (3) 0.0474 (17)
H17A 0.2414 0.4300 0.7622 0.057*
C18 0.2457 (3) 0.6893 (3) 0.7222 (3) 0.0373 (14)
H18A 0.1817 0.6855 0.7121 0.045*
H18B 0.2596 0.7422 0.7291 0.045*
C19 0.2896 (4) 0.6625 (3) 0.6566 (3) 0.0355 (14)
C20 0.3905 (4) 0.6750 (4) 0.6689 (3) 0.0496 (17)
H20A 0.4140 0.6446 0.7081 0.074*
H20B 0.4022 0.7270 0.6794 0.074*
H20C 0.4185 0.6611 0.6270 0.074*
C21 0.2556 (4) 0.7128 (3) 0.5935 (3) 0.0483 (17)
H21A 0.1925 0.7063 0.5843 0.072*
H21B 0.2848 0.6988 0.5522 0.072*
H21C 0.2683 0.7645 0.6049 0.072*
C22 0.2664 (3) 0.5811 (3) 0.6383 (3) 0.0332 (14)
C23 0.3288 (4) 0.5275 (4) 0.6238 (3) 0.0404 (15)
H23A 0.3885 0.5412 0.6259 0.048*
C24 0.3056 (5) 0.4547 (4) 0.6065 (3) 0.0501 (17)
H24A 0.3496 0.4204 0.5969 0.060*
C25 0.2180 (5) 0.4319 (4) 0.6032 (3) 0.0541 (18)
H25A 0.2023 0.3825 0.5918 0.065*
C26 0.1550 (4) 0.4837 (4) 0.6171 (3) 0.0500 (17)
H26A 0.0956 0.4693 0.6153 0.060*
C27 0.1778 (4) 0.5575 (4) 0.6339 (3) 0.0412 (15)
H27A 0.1334 0.5919 0.6424 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0262 (2) 0.0405 (2) 0.0342 (2) 0.0021 (2) 0.00262 (15) −0.0040 (2)
Cl1 0.0347 (8) 0.0812 (14) 0.0794 (13) −0.0075 (9) −0.0002 (8) −0.0371 (11)
C1 0.030 (3) 0.072 (5) 0.033 (3) 0.003 (3) 0.004 (2) 0.008 (3)
C2 0.027 (3) 0.037 (4) 0.050 (4) 0.001 (3) 0.003 (3) −0.007 (3)
C3 0.042 (4) 0.074 (5) 0.059 (4) −0.004 (4) 0.002 (3) −0.017 (4)
C4 0.033 (3) 0.083 (6) 0.041 (4) −0.003 (3) 0.007 (3) −0.006 (4)
C5 0.023 (3) 0.047 (4) 0.040 (3) 0.007 (3) 0.009 (2) 0.002 (3)
C6 0.039 (4) 0.049 (4) 0.047 (4) 0.001 (3) 0.014 (3) 0.005 (3)
C7 0.039 (4) 0.048 (4) 0.056 (4) 0.006 (3) 0.003 (3) −0.001 (3)
C8 0.032 (3) 0.048 (4) 0.035 (3) 0.003 (3) 0.010 (3) −0.002 (3)
C9 0.033 (3) 0.054 (4) 0.032 (3) 0.009 (3) 0.007 (3) 0.011 (3)
C10 0.047 (4) 0.094 (6) 0.044 (4) −0.005 (4) −0.009 (3) 0.009 (4)
C11 0.044 (4) 0.057 (5) 0.079 (5) 0.026 (4) 0.009 (4) 0.020 (4)
C12 0.031 (3) 0.033 (4) 0.041 (4) 0.007 (3) 0.003 (3) 0.002 (3)
C13 0.050 (4) 0.039 (4) 0.042 (4) 0.010 (3) 0.007 (3) 0.002 (3)
C14 0.047 (4) 0.039 (4) 0.055 (4) 0.003 (3) 0.018 (3) 0.005 (3)
C15 0.037 (4) 0.039 (4) 0.093 (6) −0.002 (3) 0.005 (4) −0.002 (4)
C16 0.054 (4) 0.062 (5) 0.053 (4) 0.009 (4) −0.010 (3) −0.008 (4)
C17 0.045 (4) 0.052 (4) 0.044 (4) 0.011 (3) 0.003 (3) 0.003 (3)
C18 0.033 (3) 0.033 (3) 0.046 (4) −0.003 (3) 0.003 (3) −0.002 (3)
C19 0.035 (3) 0.037 (4) 0.036 (3) 0.002 (3) 0.006 (3) 0.008 (3)
C20 0.042 (4) 0.047 (4) 0.061 (4) −0.011 (3) 0.013 (3) 0.004 (4)
C21 0.052 (4) 0.044 (4) 0.049 (4) −0.001 (3) 0.005 (3) 0.009 (3)
C22 0.032 (3) 0.043 (4) 0.025 (3) 0.003 (3) 0.003 (2) 0.002 (3)
C23 0.038 (3) 0.049 (4) 0.034 (3) 0.004 (3) 0.002 (3) −0.001 (3)
C24 0.064 (4) 0.047 (4) 0.039 (4) 0.010 (4) 0.003 (3) −0.009 (3)
C25 0.089 (5) 0.032 (4) 0.040 (4) −0.005 (4) −0.001 (4) −0.002 (3)
C26 0.045 (4) 0.048 (4) 0.057 (4) −0.020 (4) 0.002 (3) 0.004 (4)
C27 0.032 (3) 0.043 (4) 0.049 (4) 0.003 (3) 0.007 (3) 0.006 (3)

Geometric parameters (Å, °)

Sn1—C1 2.146 (5) C12—C17 1.378 (7)
Sn1—C18 2.149 (5) C12—C13 1.387 (7)
Sn1—C8 2.152 (5) C13—C14 1.384 (8)
Sn1—Cl1 2.3978 (17) C13—H13A 0.9300
C1—C2 1.541 (7) C14—C15 1.356 (8)
C1—H1A 0.9700 C14—H14A 0.9300
C1—H1B 0.9700 C15—C16 1.386 (9)
C2—C5 1.511 (7) C15—H15A 0.9300
C2—C3 1.532 (8) C16—C17 1.382 (8)
C2—C4 1.537 (7) C16—H16A 0.9300
C3—H3A 0.9600 C17—H17A 0.9300
C3—H3B 0.9600 C18—C19 1.529 (7)
C3—H3C 0.9600 C18—H18A 0.9700
C4—H4A 0.9600 C18—H18B 0.9700
C4—H4B 0.9600 C19—C22 1.522 (8)
C4—H4C 0.9600 C19—C20 1.536 (7)
C5—C6 1.389 (8) C19—C21 1.545 (7)
C5—C7 1.391 (8) C20—H20A 0.9600
C6—C6i 1.422 (11) C20—H20B 0.9600
C6—H6A 0.9300 C20—H20C 0.9600
C7—C7i 1.387 (11) C21—H21A 0.9600
C7—H7A 0.9300 C21—H21B 0.9600
C8—C9 1.530 (7) C21—H21C 0.9600
C8—H8A 0.9700 C22—C23 1.382 (7)
C8—H8B 0.9700 C22—C27 1.395 (7)
C9—C12 1.531 (7) C23—C24 1.373 (8)
C9—C10 1.531 (8) C23—H23A 0.9300
C9—C11 1.548 (8) C24—C25 1.378 (8)
C10—H10A 0.9600 C24—H24A 0.9300
C10—H10B 0.9600 C25—C26 1.365 (8)
C10—H10C 0.9600 C25—H25A 0.9300
C11—H11A 0.9600 C26—C27 1.386 (8)
C11—H11B 0.9600 C26—H26A 0.9300
C11—H11C 0.9600 C27—H27A 0.9300
C1—Sn1—C18 117.8 (2) H11B—C11—H11C 109.5
C1—Sn1—C8 114.3 (2) C17—C12—C13 117.1 (5)
C18—Sn1—C8 115.0 (2) C17—C12—C9 119.5 (5)
C1—Sn1—Cl1 102.73 (17) C13—C12—C9 123.4 (5)
C18—Sn1—Cl1 101.32 (16) C14—C13—C12 121.0 (6)
C8—Sn1—Cl1 102.30 (16) C14—C13—H13A 119.5
C2—C1—Sn1 119.0 (4) C12—C13—H13A 119.5
C2—C1—H1A 107.6 C15—C14—C13 120.8 (6)
Sn1—C1—H1A 107.6 C15—C14—H14A 119.6
C2—C1—H1B 107.6 C13—C14—H14A 119.6
Sn1—C1—H1B 107.6 C14—C15—C16 119.7 (6)
H1A—C1—H1B 107.0 C14—C15—H15A 120.1
C5—C2—C3 113.7 (5) C16—C15—H15A 120.1
C5—C2—C4 109.4 (4) C17—C16—C15 119.0 (6)
C3—C2—C4 106.5 (5) C17—C16—H16A 120.5
C5—C2—C1 111.4 (5) C15—C16—H16A 120.5
C3—C2—C1 107.2 (5) C12—C17—C16 122.3 (6)
C4—C2—C1 108.4 (5) C12—C17—H17A 118.8
C2—C3—H3A 109.5 C16—C17—H17A 118.8
C2—C3—H3B 109.5 C19—C18—Sn1 117.4 (4)
H3A—C3—H3B 109.5 C19—C18—H18A 107.9
C2—C3—H3C 109.5 Sn1—C18—H18A 107.9
H3A—C3—H3C 109.5 C19—C18—H18B 107.9
H3B—C3—H3C 109.5 Sn1—C18—H18B 107.9
C2—C4—H4A 109.5 H18A—C18—H18B 107.2
C2—C4—H4B 109.5 C22—C19—C18 112.0 (4)
H4A—C4—H4B 109.5 C22—C19—C20 112.2 (5)
C2—C4—H4C 109.5 C18—C19—C20 108.8 (5)
H4A—C4—H4C 109.5 C22—C19—C21 108.5 (5)
H4B—C4—H4C 109.5 C18—C19—C21 107.9 (5)
C6—C5—C7 117.5 (5) C20—C19—C21 107.2 (5)
C6—C5—C2 121.7 (5) C19—C20—H20A 109.5
C7—C5—C2 120.8 (6) C19—C20—H20B 109.5
C5—C6—C6i 120.9 (3) H20A—C20—H20B 109.5
C5—C6—H6A 119.6 C19—C20—H20C 109.5
C6i—C6—H6A 119.6 H20A—C20—H20C 109.5
C7i—C7—C5 121.7 (4) H20B—C20—H20C 109.5
C7i—C7—H7A 119.2 C19—C21—H21A 109.5
C5—C7—H7A 119.2 C19—C21—H21B 109.5
C9—C8—Sn1 118.4 (3) H21A—C21—H21B 109.5
C9—C8—H8A 107.7 C19—C21—H21C 109.5
Sn1—C8—H8A 107.7 H21A—C21—H21C 109.5
C9—C8—H8B 107.7 H21B—C21—H21C 109.5
Sn1—C8—H8B 107.7 C23—C22—C27 116.4 (6)
H8A—C8—H8B 107.1 C23—C22—C19 123.5 (5)
C8—C9—C12 111.7 (5) C27—C22—C19 120.0 (5)
C8—C9—C10 108.8 (5) C24—C23—C22 122.2 (6)
C12—C9—C10 112.2 (5) C24—C23—H23A 118.9
C8—C9—C11 108.5 (4) C22—C23—H23A 118.9
C12—C9—C11 107.6 (5) C23—C24—C25 120.9 (6)
C10—C9—C11 107.8 (5) C23—C24—H24A 119.6
C9—C10—H10A 109.5 C25—C24—H24A 119.6
C9—C10—H10B 109.5 C26—C25—C24 118.1 (6)
H10A—C10—H10B 109.5 C26—C25—H25A 120.9
C9—C10—H10C 109.5 C24—C25—H25A 120.9
H10A—C10—H10C 109.5 C25—C26—C27 121.3 (6)
H10B—C10—H10C 109.5 C25—C26—H26A 119.4
C9—C11—H11A 109.5 C27—C26—H26A 119.4
C9—C11—H11B 109.5 C26—C27—C22 121.1 (6)
H11A—C11—H11B 109.5 C26—C27—H27A 119.5
C9—C11—H11C 109.5 C22—C27—H27A 119.5
H11A—C11—H11C 109.5
C18—Sn1—C1—C2 −23.9 (5) C17—C12—C13—C14 0.0 (9)
C8—Sn1—C1—C2 −163.6 (4) C9—C12—C13—C14 −180.0 (5)
Cl1—Sn1—C1—C2 86.4 (4) C12—C13—C14—C15 −0.1 (9)
Sn1—C1—C2—C5 58.8 (6) C13—C14—C15—C16 −0.1 (10)
Sn1—C1—C2—C3 −66.2 (6) C14—C15—C16—C17 0.3 (10)
Sn1—C1—C2—C4 179.2 (4) C13—C12—C17—C16 0.2 (9)
C3—C2—C5—C6 168.2 (5) C9—C12—C17—C16 −179.8 (6)
C4—C2—C5—C6 −72.9 (7) C15—C16—C17—C12 −0.4 (10)
C1—C2—C5—C6 46.9 (7) C1—Sn1—C18—C19 −145.8 (4)
C3—C2—C5—C7 −13.9 (7) C8—Sn1—C18—C19 −6.4 (5)
C4—C2—C5—C7 105.0 (6) Cl1—Sn1—C18—C19 103.1 (4)
C1—C2—C5—C7 −135.2 (5) Sn1—C18—C19—C22 61.7 (5)
C7—C5—C6—C6i −0.3 (10) Sn1—C18—C19—C20 −62.9 (6)
C2—C5—C6—C6i 177.7 (6) Sn1—C18—C19—C21 −179.0 (4)
C6—C5—C7—C7i 0.4 (10) C18—C19—C22—C23 −131.9 (5)
C2—C5—C7—C7i −177.6 (6) C20—C19—C22—C23 −9.2 (7)
C1—Sn1—C8—C9 −11.0 (5) C21—C19—C22—C23 109.1 (6)
C18—Sn1—C8—C9 −151.8 (4) C18—C19—C22—C27 49.5 (7)
Cl1—Sn1—C8—C9 99.3 (4) C20—C19—C22—C27 172.2 (5)
Sn1—C8—C9—C12 56.1 (6) C21—C19—C22—C27 −69.5 (6)
Sn1—C8—C9—C10 −68.3 (5) C27—C22—C23—C24 −0.5 (8)
Sn1—C8—C9—C11 174.6 (4) C19—C22—C23—C24 −179.1 (5)
C8—C9—C12—C17 48.6 (7) C22—C23—C24—C25 −0.3 (9)
C10—C9—C12—C17 171.1 (6) C23—C24—C25—C26 0.4 (9)
C11—C9—C12—C17 −70.4 (7) C24—C25—C26—C27 0.3 (9)
C8—C9—C12—C13 −131.4 (6) C25—C26—C27—C22 −1.1 (9)
C10—C9—C12—C13 −8.9 (8) C23—C22—C27—C26 1.1 (8)
C11—C9—C12—C13 109.6 (6) C19—C22—C27—C26 179.8 (5)

Symmetry codes: (i) −x, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2026).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chandrasekhar, V., Nagendran, S. & Baskar, V. (2002). Coord. Chem. Rev.235, 1–52.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Tarassoli, A., Asadi, A. & Hitchcock, P. B. (2002). J. Organomet. Chem.645, 105–111.
  6. Wu, X., Kang, W., Zhu, D., Zhu, C. & Liu, S. (2009). J. Organomet. Chem.694, 2981–2986.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011670/pb2026sup1.cif

e-66-0m495-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011670/pb2026Isup2.hkl

e-66-0m495-Isup2.hkl (243.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES